基本信息

【插图】

编辑推荐
国内数据中台领域领先企业数澜科技官方出品
萃取百家头部企业数据资产构建经验,系统总结数据资产设计方法论
内容简介
计算机书籍
内容简介
·企业数字化转型中Z适合的数据资产组织方式是什么样的?
·为什么越来越多的企业在讨论标签化和标签体系?
·数澜独创的标签类目体系方法论有何独到之处?
数据资产化是企业数字化转型的必经之路,也是数据中台的重要组成部分。
标签类目体系是数据中台理念落地的核心组成部分,是实现数据资产可复用、柔性组合使用、降低数据应用试错门槛的强力支撑。
数据作为第五生产要素参与分配,数据资本化的重要前提是数据商品化,数据商品化的Z佳载体就是标签。因此,学习如何将数据转化、映射为标签,并通过对标签的管理、应用实现数据资产的价值运营,对于商业化企业来说显得尤为重要。
本书旨在培养资深的数据资产架构师及数据运营专家,以方法教育而非工具实施的方式助力企业建立自身的数据资产化能力,将数据能力Z大限度地转化为商业价值。
全书共9章,分为3部分。
由来篇(第1~3章)
首先分析了当前各企业在数据建设过程中会遇到的6类主流问题与困难限制;为了应对这些数据问题,逐渐发展出的标签类目体系这一数据资产构建方法论及其定位定义;论述了采用该方法建设数据资产的3点必要性与意义:资产可复用、业务可理解、价值可衡量。
理论篇(第4~6章)
详细讲解了标签类目体系方法论的4条核心原理;从核心原理衍生出的完整设计步骤,包括3个构建前提和6条设计步骤;同时阐述了标签方法论在实施落地过程中的具体使用技法,并探讨了其中的核心问题。
实践篇(第7~9章)
重点介绍了当前可用的标签工具和经典模板,它们可以用来提升标签类目体系的设计、使用、运营效率;列举了5个从标签设计到数据应用的Z佳实践方案;并总结了标签化成果价值、商业/社会价值及标签设计人才的培养经验。
作译者
任寅姿(花名:影姿)
资深产品总监、数澜研究院院长
拥有超过10年的数据产品经验,原阿里巴巴集团数据产品专家,曾负责集团消费者标签类目体系、DMP精准营销等系统的数据资产设计与实施。2016年加入数澜科技,负责管理公司产品团队,系统提升团队数据思维、数据资产设计能力及数据服务应用经验,是数据中台理论定义及体系构建的核心参与者。
合著有畅销书《数据中台:让数据用起来》,已获得“数据类目体系”专利,且撰写的多篇论文被国内外核心期刊刊登发表。
季乐乐(花名:寒泉)
政法行业资深专家、产品专家
拥有超过6年的政法行业产品经验,原南京通达海区域负责人,专注于研究数字检务、智慧法院等领域。从业以来先后负责过云南全省法院信息化建设、全国法院执行系统建设、“206”工程等行业级项目。2019年加入数澜科技,负责数字检务产品线,形成以“数据服务业务,业务产生价值”为核心的数字化建设方法论,切实解决业务场景痛点。
目录
序二
前言
由来篇 因何产生,为何需要
第1章 因:6大数据困局
1.1 数据孤岛,无法打通2
1.2 烟囱式建设,重复造轮子6
1.3 各说各话,没有统一口径9
1.4 鸡同鸭讲,无法穿透业务层12
1.5 数据人员的梦魇,数据治理永远没有尽头14
1.6 数据部门的尴尬,被命运扼住咽喉的成本中心18
第2章 源:6段由来过程
2.1 数据资产发展的4个阶段22
2.1.1 数据资产1.0:构建消费者信息库23
2.1.2 数据资产2.0:ID-Mapping打通数据27
2.1.3 数据资产3.0:全集团数据共享共荣30
2.1.4 数据资产4.0:更广泛领域的数据实践35
2.2 方法论抽象的2个阶段38
2.2.1 方法论0.1:方法梳理38
2.2.2 方法论1.0:原理研究42
前言
当前很多企业在搭建数据中台时,仍然采用传统的管理思路:要梳理哪些数据,需要多少台服务器来存储数据,要采购什么计算引擎……其构建思路依然是:搭建开发集成环境进行一站式开发,利用数据管理工具对数据标准、数据安全、元数据进行管理,利用API网关对所有服务接口进行调用监控……
这些事情本身并没有错,但以技术来驱动数据中台建设也许从方向上就错了!技术专家给客户看的架构图越来越复杂,乙方企业在争抢技术领先的泥沼中越陷越深,甲方客户则看得晕头转向。
中台的核心本质是将可复用的能力、技术和工具汇聚在一起,帮助前端业务快速响应变化。中台从定义上就超出了技术范畴,它所涉及的系统领域并不局限于技术层面。
中台必须与业务接轨,不能与业务无缝接轨的不能叫中台。好的中台能让业务小组或创新小组基于中台已有的可复用模块快速优化业务功能,创新商业模式。而这种中台的建设不能再以“管”数据的思路为指导,而要以“用”数据为出发点。
现在的中台还停留在1.0时代,即供技术人员开发和管理数据使用;到了2.0时代,中台应该是一个智能操作系统,能让业务人员以可理解、易操作的方式创建服务接口或应用系统,让数据“用”起来。
也许我们应该花更多精力来思考如何快速进入中台2.0时代。
现状是,很多企业还停留在数据梳理、治理、数仓建设阶段,业内研究较多的仍然是如何制定标准、推动标准治理落地。在实践过程中,数据部门把自己变成了庞大的成本中心,数据治理项目做了几年还只是刚刚开了个头,而业务部门则嗷嗷待哺,已经失去了耐心。
数据资产是什么?数据中台的价值是什么?在繁杂的工作面前,我们需要回归事物的本质。数据资产是能给业务带来经济价值的数据资源。数据中台的价值在于让业务快速试错,在千百次的试验中找到并发挥数据的商业价值。因此比起开发、治理和管理,是不是更应该将注意力放在寻找真正能给业务带来价值的数据资源上?在本书中我们用标签—一种从业务视角理解数据的组织方式—作为数据资产的逻辑载体。有了标签对物理数据的逻辑映射,数据对于业务人员来说就不再是无法碰触的数据虚体,而是鲜活生动的数据产品,具有标签名、标签定义、标签逻辑、标签取值、标签适用场景、标签调用量、标签质量、标签价值等使用属性。标签化使得业务人员看数据就像逛淘宝,选数据就像加购物车,用数据就像下单购买一样简单。
这时候,一种岗位应运而生。这种岗位以前可能叫数据产品经理,现在应该叫数据资产设计师,而以后一定是数据资产使能者:专心研究业务所需标签,将其设计和开发出来并在数据中台的数据资产库中上架,让业务人员能自己查看、选择、使用标签,从而极大地缩短数据资产使用周期,降低业务试错成本,通过反向推动链将数据价值发挥到极致。
本书主要内容
本书共9章,分为3篇。
由来篇(第1~3章)首先分析了当前各企业在数据建设过程中会遇到的6大数据困局,然后重点介绍了为应对这些数据困局而逐渐发展出的标签类目体系这一数据资产构建方法论及其定位、定义,最后阐述了采用该方法建设数据资产的3点必要性:资产可复用、业务可理解、价值可衡量。
理论篇(第4~6章)详细讲解了标签类目体系方法论的4个核心原理、从核心原理衍生出的3个构建前提和6个设计步骤,以及标签方法论在实施落地过程中的具体使用技法与核心问题。
实践篇(第7~9章)重点介绍了当前可用来提升标签类目体系的设计、使用、运营效率的标签工具和经典模板,列举了从标签到应用的5个最佳实践方案,并总结了标签化的价值、典型应用案例及标签设计人才的培养经验。
读者对象
企业管理者:CEO、CIO、CTO、CDO、数字化转型项目领导者、数据中台构建项目领导者等。
数据从业人员:数据部门主管、数据架构师、数据产品经理、数据分析师、数据开发工程师等。
业务人员:业务部门负责人、业务人员、运营人员等。
致谢
媒体评论
—— 汪广盛 国际数据管理协会(DAMA)中国区主席
标签是对数据的降维打击,是跨越媒体的桥梁。关于如何正确获得数据标签,本书提供了从理论到方法、从领域到场景的案例指导。希望读者能从本书中得到启发与思考,从而在具体的实践中让数据治理更容易,让数据共享更便捷,最终让数据产生更大的价值。
—— 金小刚 浙江大学计算机科学与技术学院教授
在做数据分析前需要先对复杂的业务对象建立分析索引,以支持分析逻辑。本书面向数据分析这一目的,从实战的角度介绍了业务对象的分类体系和属性管理方法。数据标签要服从于业务,需要结合业务数据生成源头——企业核心业务系统的数据管理体系来为业务创造价值。
—— 陈果 波士顿咨询Platinion董事总经理
决定企业数字化转型能否取得预期目标的关键因素是数据资产。标签类目体系是数据资产的核心组成部分,更是企业战略决策和战略实施的有力支撑。构建标签类目体系是专业性较强的领域,既需要理论和方法,也需要实践和探索。本书是数据从业人员难得的参考书,相信本书能够为数字化转型企业带来有益的借鉴和参考,强力推荐。
—— 郭新和 好莱客信息与数字化中心总监