基本信息

【插图】

编辑推荐
资深策略产品经理多年实战和布道经验总结
从数学、经济学和人工智能3个维度总结(独创)策略产品经理必备方法论
用模型化思维解决产品策略问题,针对各种常见场景,提炼大量策略模型,直指问题本质
内容简介
经济管理学书籍
本书主要分为四大部分。
第一部分为基础认知,简要介绍时代背景,从行业发展角度阐述策略产品经理产生的必要性,包括策略产品经理的工作职责与工作内容,给读者一个整体的认知。
第二部分为函数与经济学应用,介绍了基于机器学习理论出发的函数方法论、实际案例剖析,如推荐、搜索、广告等,以及基于经济学理论的方法论、实际案例,如风控、定价等。
第三部分为算法与前沿技术,介绍了机器学习的本质、基础的机器学习算法、深度学习相关的前沿技术。
第四部分为能力拆解与策略团队建设,从数据分析、沟通、项目管理、判断等多个方面介绍策略产品相比其他产品经理额外需要的能力,以及不同产品阶段的策略团队组建思路。
目录
概览篇
第1章 智能化时代下的产品经理
1.1 当下的技术和市场环境002
1.1.1 技术升级带来的新变化002
1.1.2 用户和市场的趋势走向006
1.2 双拐点来临,常规产品经理如何转型009
1.3 智能化时代催生了策略产品经理012
1.3.1 最早的策略产品经理招聘信息012
1.3.2 常规产品思维和策略产品思维014
第2章 策略产品经理到底是什么
2.1 策略产品经理的本质017
2.1.1 基于方法的命名017
2.1.2 基于目标的命名019
2.1.3 基于场景的命名021
2.1.4 小结023
2.2 策略产品经理职责剖析024
2.3 策略产品经理能力剖析026
方法篇
第3章 策略产品经理必备的函数方法论
前言
父母的身高与孩子的身高有什么样的关系?
这是一个有趣的问题。按照我们的常识,父母的个子越高,子女的个子大多越高,甚至可能高过父母。但如果子女的个子总是高过父母,那么经过多年繁衍,人类的身高岂不是要突破天际?
19世纪,英国著名遗传学家、统计学家弗朗西斯·高尔顿(Francis Galton)收集了1078对父母与子女的身高样本数据,发现子女与父母的身高呈线性关系,即如果把父母的平均身高设为x,子女的平均身高设为y,那么可以用一个线性函数来表达它们之间的关系:
y=f(x)=wx+b
其中,参数w和b均为实数,因此这样的线性函数理论上来说有无限多可能。如果用二维坐标来表达,将参数w映射到横轴、参数b映射到纵轴,我们会发现这样的线性函数和二维平面上的点一样多。那么,在这众多的线性函数中,哪一个函数最能真实地描述样本数据中呈现的线性关系?为此我们可以从样本数据出发,用预估结果与实际结果的平均误差来定义一个选择函数的评估标准——样本数据的均方误差δ:
δ=1N∑Ni=1(wxi+b-yi)2
均方误差越小,意味着这一组参数(w,b)越接近世界的真相。仔细观察我们会发现,均方误差δ实际上是一个关于w和b的二次函数δ(w,b),因此,可以在三维空间用一个开口向上的抛物面来描绘这一函数,抛物面上的每一个点(w,b)都代表了一组参数,即唯一确定了一个线性函数。
如下图所示,这个抛物面的最低点(w*,b*)即我们希望得到的使均方误差δ最小的一组线性函数参数。由此,高尔顿从样本数据中最终得到子女与父母身高的关系y=0.516x+0.8567(单位为米)。系数w小于1意味着人类的高个子基因不会永远遗传下去,而是最终回归到一个均值,这样的方法也被称为线性回归。
而像上面这样的思考和求解过程可以用一个最优化公式来表达:
w*,b*=arg minw,b δ(w,b)
即最低点(w*,b*)是使得评估标准函数δ(w,b)最小的一组参数,这组参数也唯一地确定了一个线性函数y=f(x)=wx+b。
以小见大,我们对世界的解读便从这里开始。
产品经理需要懂算法吗
过去,产品经理总是因为“产品经理需要懂技术吗”这个问题而焦虑。新时代的来临让这个问题发生变化,也让许多产品经理开始试图在众多算法资料中寻找答案,并陷入各种算法细节中不能自拔。
从字面意义上理解,“算法”一词指计算方法,既包括技术类文章中常见的排序算法、贪心算法等,又包括机器学习中的一些求解算法,如梯度下降法、牛顿迭代法等。而另一个概念——“模型”则是对问题的形式化定义,即用形式化语言表达要解决的问题,这是对这个世界认知的第一步。因此,在上面身高遗传(线性回归)的问题中,模型指的是利用线性函数与最优化公式对问题进行表达,而算法则是在模型确定之后具体求解参数(w*,b*)的过程(如对参数求导并令导数为零,即最小二乘法)。
然而,市面上许多资料并不会严格区分这两个概念,例如当人们提到推荐算法时,实际上既讨论了推荐模型,也讨论了推荐模型的算法。过去我也是这样混用的,在本书写作过程中才意识到,概念的厘清有助于读者尤其是初学者把精力放在真正应该了解的内容上面。
同时我还意识到,并不是所有公司都能像BAT这类大公司一样拥有成熟的业务、完整的团队建制和稳定的系统架构,并且即使是大公司,也在不断催生新业务、面临新问题、产生新模块。因此,对于大部分人尤其是广大中小公司的产品经理而言,了解一个问题解决方案的演进路径比了解成熟方案更为重要。
那么回到最初的问题,我对这个问题的回答是:“作为用产品表达这个世界的角色,新时代下的产品经理可以不懂算法,但一定要懂模型及其演进路径。”
读者对象
媒体评论
本书系统地探讨了产品经理如何在数据的驱动下做好产品。其科学的方法论、成熟的工具、具有实操性的案例,让数据驱动不再是空洞的理念,具有更强的指导性。如果想在智能时代做好产品,你应该阅读本书,并进行思考和实践。
后显慧三节课创始人兼CEO
产品和运营一直是三节课重点关注的方向,策略产品经理这一结合了产品和运营的新岗位早就引起我们的注意。要想做好策略产品,除了需要掌握传统产品经理应该具备的技能外,还需要掌握与业务、经济、机器学习等相关的知识,所以很多人望而却步。本书通过统一的方法论去解读产品策略,以大家最熟悉的模型化的方式去分析各种必备技能,帮助大家快速向策略产品经理岗位转型。
曲卉 《硅谷增长黑客实战笔记》作者
经过互联网公司的多轮合并热潮,越来越多的平台涵盖了生活中的各个场景,也掌握了大量的实时用户数据。公司想要在产品上取得成功,就需要具有模型思维、懂数据和算法的策略产品经理,因为他们能用建模的方式找到全局最优解。本书清晰、完整、有趣,既可以作为策略产品经理的入门书,也可以作为所有互联网从业者拓展思路的进阶指导书。
车马 《首席产品官》作者
随着产品的持续进化,策略变得越来越重要,也越来越复杂,于是有了策略产品经理。本书系统性强、内容丰富,除了详细剖析策略产品的模型、方法论,还讲解了策略产品的应用场景以及策略产品经理的能力和职业路径。我向互联网产品经理推荐这本书——你真的需要系统了解策略产品;我向算法工程师、数据分析师推荐这本书——策略产品经理是你很好的转型方向。