基本信息

编辑推荐
---------------------------数理统计与数据分析(原书第3版)---------------------------
几乎涵盖所有经典和前沿的概率论与数理统计理论和方法
用真实数据分析实际问题
将自助方法与传统推论性过程相结合
内容简介
数学书籍
---------------------------统计模型:理论和实践(原书第2版)---------------------------
《统计模型:理论和实践(原书第2版)》是一本优秀的统计模型教材,着重讲解线性模型的应用问题,包括广义*小二乘和两步*小二乘模型,以及二分变量的probit及logit模型的应用。《统计模型:理论和实践(原书第2版)》还包括关于研究设计、二分变量回归及矩阵代数的背景知识。此外,《统计模型:理论和实践(原书第2版)》附有大量的练习,并且其中多数练习题在书后都有答案,便于读者学习、巩固和提高。
适合作为统计专业高年级本科生和低年级研究生线性模型课程的教材,同时也适合作为相关领域研究人员的参考书。
---------------------------数理统计与数据分析(原书第3版)---------------------------
《数理统计与数据分析(原书第3版)》将现代统计学的重要思想引入数理统计课程中,强调了数据分析、图形工具和计算机技术,并注重统计的实务和应用. 本书内容丰富,几乎涵盖了所有经典和前沿的概率论与数理统计理论和方法,主要包括概率、随机变量、联合分布、期望、极限定理、抽样调查、参数估计、假设检验、数据汇总、两样本比较、方差分析、分类数据分析和线性最小二乘等.
《数理统计与数据分析(原书第3版)》用真实数据分析了实际问题,以此增强读者对理论的理解;作者将自助方法与传统的推论性过程结合起来,增加了蒙特卡罗方法. 此外,为了使概念更清晰,书中提供了大量的示例,而且还有丰富的习题,以增强读者的计算能力.
《数理统计与数据分析(原书第3版)》适合作为统计学、数学、其他理工科专业以及社会科学和经济学专业高年级本科生和低年级研究生的教材,同时也可供相关领域技术人员参考.
作译者
---------------------------统计模型:理论和实践(原书第2版)---------------------------
David A. Freedman (1938-2008) 是加州大学伯克利分校的统计学教授。他是杰出的数理统计学家,其研究范围包括鞅不等式分析、Markov过程、抽样、自助法等。他是美国科学学院(American Academy of Art and Sciences)院士。在2003年,他获得了美国科学院授予的John J. Carty科学进步奖,以表彰他对统计理论和实践做出的贡献。
---------------------------数理统计与数据分析(原书第3版)---------------------------
John A. Rice,在加州大学伯克利分校获得博士学位,并一直任教于该校统计系,现为该校统计学名誉教授。他是美国数理统计学会成员,发表过多篇理论和应用统计学论文,其研究兴趣集中于海量和需要高强度计算的随机数据的分析方法。
目录
---------------------------统计模型:理论和实践(原书第2版)---------------------------
译者序
引言
第2版序
前言
第1章 观测研究和实验1
1.1 引言1
1.2 HIP试验2
1.3 关于霍乱的研究4
1.4 Yule关于贫困原因的研究6
1.5 札记9
第2章 回归线12
2.1 引言12
2.2 回归线12
2.3 胡克定律14
译者序
---------------------------数理统计与数据分析(原书第3版)---------------------------
《Mathematical Statistics and Data Analysis》是美国加州大学名誉教授 John A. Rice 所著的一本优秀的概率论与数理统计教材,1988 年由 Thomson Brooks/Cole 出版,并于 1994 年再版,2003 年机械工业出版社购买了该书在中国的影印版权,发行了影印本,2007 年本书的第 3版问世. 书中直观而深刻的统计思想,简明而翔实的数据分析实例,新颖而丰富的图形工具和计算机技术使其别具风格,开创了概率论与数理统计教程著述方式的先河,引领了数理统计发展的方向,深受广大读者喜爱和专家学者的好评,至今,已被美国、英国、加拿大和中国的许多大学选为概率论与数理统计的教材或参考书.
John A. Rice 教授(1944
前言
---------------------------统计模型:理论和实践(原书第2版)---------------------------
读这本书是一种完完全全的享受。自从伯克利加利福尼亚大学统计系郁彬教授在2008年向我推荐这本书之后,我一开始期望的是一本数学味很强的标准回归分析教材。后来,完全出乎意外,这本书竟然是我多年来企图寻找却又不可得的涉及回归分析甚至统计领域核心问题的一本以不寻常的清楚明白方式写的传奇式的读物。 一眼就可以看出该书是出自大家的手笔。在应用统计于科学、医学和社会科学等领域方面,几十年来,本书作者David Freedman都一直被誉为统计的良心。该书是他在研究生命最旺盛的时期写的,代表了当代应用回归教科书的最高水平。作者不仅在伯克利,而且在世界许多高校都使用该教材讲过回归。多年的应用经验和教学实践使得该书内容丰富,语言平易近人,易教易学。该书的实际例子和练习题是精心挑选的,对掌握该书的内容不可或缺。
通常的回归或统计模型教材,无论标以理论或是应用的标签,往往对模型附加了很多假定,但又从来不解释如果这些假定不满足,则会发生什么问题或灾难。这本书不但不回避这些一般教师避之唯恐不及的关于模型的设置和假定等敏感问题,而且专门对各个领域最著名的、最有影响的文章的模型设置及各种假定进行认真的剖析。读这本书对于教师、学生,特别是实际工作者皆是一种心灵的震撼。我相信,任何有心人读了这本书之后,都会在未来涉及回归的课题上倍加小心,避免发生各种根本意想不到的错误。这本书会使许多人受益不浅,功德无量。
我对这本书的翻译是在2009年David Freedman去世之后,当时还不知道他在去世前已经定稿了修订版。因此,我先翻译了初版,后来又翻译了这一版。我恐怕是本书最忠实的中国读者之一。我希望那些在中国大学教本科生或者研究生回归模型课程的教师,能够以本书作为教材或者主要参考书,使得学生能够直接受益于国际一流统计大师的经验与智慧。
---------------------------数理统计与数据分析(原书第3版)---------------------------
读者对象
本书适合于统计学、数学、自然科学和工程专业的低年级和高年级本科生,或一年级研究生,以及具有一定统计学基础的社会科学和经济学专业的学生阅读. 读者必须修读了包含泰勒级数和多元微积分在内的一年微积分课程,以及初级的线性代数课程.
本书的目标
这本书反映了我对第一门统计学课程的认识,而这对很多学生来说可能是最后的统计课程.
这样的课程应该包括数理统计的一些经典内容(如似然法),以及描述统计学和数据分析的一些内容,特别是图形显示、试验设计和复杂的实际应用. 它还应该体现出计算机在统计学中所起的不可或缺的作用. 这些主题适当地交织在一起,可以将现代统计学的本质展示给学生. 分别讲授两个主题的课程一个是理论,一个是数据分析,对我来讲似乎有点造作. 此外,很多学生仅学习一门统计学课程,而没有时间学习两门或两门以上这方面的课程.
数据分析与统计实践
媒体评论
---------------------------统计模型:理论和实践(原书第2版)---------------------------
“统计的第二门课是严肃的、正确的和有趣的.本书讲授了回归、因果建模、*大似然和自助法.分析现实数据的每个人都应该阅读本书,并且我们也很荣幸现在能有这个修订版.”
——Persi Diaconis,斯坦福大学数学与统计学教授
“在本书中,作者解释了因果建模中主要使用的统计方法,通过有趣的实例清晰而生动地描述了复杂的统计思想。初学者和实践者都将从本书中获益。”
——Alan Krueger,普林斯顿大学经济与公共政策学教授
“回归方法经常应用于观测数据,目的是获得因果结论。在什么环境下这是合理的?分析背后的假定是什么?本书回答了这些问题。对于不仅仅使用回归来总结数据的任何人,本书都是必读的。本书的写作风格非常好,对于社会科学中相关研究论文的讨论极具洞察力。对于从事统计建模或者讲授回归的每个人,我强烈推荐此书”
——Aad van der Vaart,阿姆斯特丹自由大学统计学教授“统计的第二门课是严肃的、正确的和有趣的.本书讲授了回归、因果建模、*大似然和自助法.分析现实数据的每个人都应该阅读本书,并且我们也很荣幸现在能有这个修订版.”
——Persi Diaconis,斯坦福大学数学与统计学教授
“在本书中,作者解释了因果建模中主要使用的统计方法,通过有趣的实例清晰而生动地描述了复杂的统计思想。初学者和实践者都将从本书中获益。”
——Alan Krueger,普林斯顿大学经济与公共政策学教授
“回归方法经常应用于观测数据,目的是获得因果结论。在什么环境下这是合理的?分析背后的假定是什么?本书回答了这些问题。对于不仅仅使用回归来总结数据的任何人,本书都是必读的。本书的写作风格非常好,对于社会科学中相关研究论文的讨论极具洞察力。对于从事统计建模或者讲授回归的每个人,我强烈推荐此书”
——Aad van der Vaart,阿姆斯特丹自由大学统计学教授
“本书是该学科的一个现代导论,讨论了图形模型和联立方程等主题。书中有许多富有启发性的练习和计算机实验。特别有价值的是关于应用统计中主要“哲人石”的关键评论。这是一本鼓舞人心的而又易读的书,无论是老师还是学生都会从中受益。”
——Gesine Reinert,牛津大学统计学教授