基本信息

编辑推荐
---------------------------TensorFlow机器学习实战指南(原书第2版)---------------------------
资深数据科学家撰写,从实战角度系统讲解TensorFlow基本概念及各种应用实践
真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,为你深度实践TensorFlow提供翔实指导
内容简介
计算机书籍
---------------------------TensorFlow机器学习实战指南(原书第2版)---------------------------
本书由资深数据科学家撰写,从实战角度系统讲解TensorFlow基本概念及各种应用实践。真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带领读者由浅入深系统掌握TensorFlow机器学习算法及其实现。
本书第1章和第2章介绍了关于TensorFlow使用的基础知识,后续章节则针对一些典型算法和典型应用场景进行了实现,并配有较详细的程序说明,可读性非常强。读者如果能对其中代码进行复现,则必定会对TensorFlow的使用了如指掌。
---------------------------TensorFlow自然语言处理---------------------------
本书首先介绍NLP和TensorFlow基础知识,然后介绍如何使用Word2vec(包括高级扩展)创建单词嵌入,将单词序列转换为可由深度学习算法访问的向量。关于经典深度学习算法的章节,如卷积神经网络(CNN)和递归神经网络(RNN),展示了句子分类和语言生成等重要的NLP任务。此外还介绍如何将高性能的RNN模型,如长短期记忆(long short memory, LSTM)单元应用于NLP任务,你还将探索神经机器翻译并实现一个神经机器翻译器。
作译者
---------------------------TensorFlow机器学习实战指南(原书第2版)---------------------------
[美] 尼克·麦克卢尔(Nick McClure) 著:尼克·麦克卢尔(Nick McClure),资深数据科学家,目前就职于美国西雅图PayScale公司,曾经在Zillow 公司和Caesar''s Entertainment公司工作,获得蒙大拿大学和圣本尼迪克学院与圣约翰大学的应用数学专业学位。
他热衷于数据分析、机器学习和人工智能。Nick 有时会把想法写成博客(http://fromdata.org/)或者发推特(@nfmcclure)。
---------------------------TensorFlow自然语言处理---------------------------
[澳] 图珊·加内格达拉(Thushan Ganegedara)著:图珊·加内格达拉(Thushan Ganegedara)目前是澳大利亚悉尼大学第三年的博士生。他专注于机器学习,喜欢深度学习。他喜欢危险,在未经测试的数据上运行算法。他还是澳大利亚初创公司AssessThreat的首席数据科学家。他在斯里兰卡莫拉图瓦大学获得了理学士学位。他经常撰写有关机器学习的技术文章和教程。此外,他还在日常生活中游泳来努力营造健康的生活方式。
目录
---------------------------TensorFlow机器学习实战指南(原书第2版)---------------------------
译者序
审校者简介
前言
第1章 TensorFlow基础 1
1.1 简介 1
1.2 TensorFlow如何工作 1
1.2.1 开始 1
1.2.2 动手做 2
1.2.3 工作原理 3
1.2.4 参考 3
1.3 声明变量和张量 4
1.3.1 开始 4
1.3.2 动手做 4
1.3.3 工作原理 6
前言
---------------------------TensorFlow机器学习实战指南(原书第2版)---------------------------
2015年11月,Google公司开源TensorFlow,随后不久TensorFlow成为GitHub上最受欢迎的机器学习库。TensorFlow创建计算图、自动求导和定制化的方式使得其能够很好地解决许多不同的机器学习算法问题。
本书介绍了许多机器学习算法,将其应用到真实场景和数据中,并解释产生的结果。
本书的主要内容
第1章介绍TensorFlow的基本概念,包括张量、变量和占位符;同时展示了在TensorFlow中如何使用矩阵和各种数学运算。本章末尾讲述如何访问本书所需的数据源。
第2章介绍如何在计算图中连接第1章介绍的所有算法组件,创建一个简单的分类器。接着,介绍计算图、损失函数、反向传播和训练模型。
第3章重点讨论使用TensorFlow实现各种线性回归算法,比如,戴明回归、lasso回归、岭回归、弹性网络回归和逻辑回归,也展示了如何在TensorFlow计算图中实现每种回归算法。
第4章介绍支持向量机(SVM)算法,展示如何在TensorFlow中实现线性SVM算法、非线性SVM算法和多分类SVM算法。
第5章展示如何使用数值度量、文本度量和归一化距离函数实现最近邻域法。我们使用最近邻域法进行地址间的记录匹配和MNIST数据库中手写数字的分类。
第6章讲述如何使用TensorFlow实现神经网络算法,包括操作门和激励函数的概念。随后展示一个简单的神经网络并讨论如何建立不同类型的神经网络层。本章末尾通过神经网络算法教TensorFlow玩井字棋游戏。
第7章阐述借助TensorFlow实现的各种文本处理算法。我们展示如何实现文本的“词袋”和TF-IDF算法。然后介绍CBOW和skip-gram模型的神经网络文本表示方式,并对于Word2Vec和Doc2Vec用这些方法来做预测,例如预测一个文本消息是否为垃圾信息。
第8章扩展神经网络算法,说明如何借助卷积神经网络(CNN)算法在图像上应用神经网络算法。我们展示如何构建一个简单的CNN进行MNIST数字识别,并扩展到CIFAR-10任务中的彩色图片,也阐述了如何针对自定义任务扩展之前训练的图像识别模型。本章末尾详细解释TensorFlow实现的图像风格和Deep-Dream算法。
第9章解释在TensorFlow中如何实现循环神经网络(RNN)算法,展示如何进行垃圾邮件预测和在莎士比亚文本样本集上扩展RNN模型生成文本。接着训练Seq2Seq模型实现德语-英语的翻译。本章末尾展示如何用孪生RNN模型进行地址记录匹配。
第10章介绍TensorFlow产品级用例和开发提示,同时介绍如何利用多处理设备(比如,GPU)和在多个设备上实现分布式TensorFlow。
第11章展示TensorFlow如何实现k-means算法、遗传算法和求解常微分方程(ODE),还介绍了Tensorboard的各种用法和如何查看计算图指标。
媒体评论
---------------------------TensorFlow机器学习实战指南(原书第2版)---------------------------
TensorFlow是开源机器学习库。本书将教你如何使用TensorFlow进行复杂数据计算,让你对数据有更深刻的理解。书中循序渐进地讲解了TensorFlow的变量、矩阵和各种数据源等基本概念,深度剖析线性回归、支持向量机、最近邻域、神经网络和自然语言处理等算法,并结合丰富的实例详细讲解情感分析、回归分析、聚类分析、神经网络和深度学习实战等应用。此外,本书还给出了TensorFlow产品级应用的最佳实践和扩展用法,可以帮助你由浅入深地掌握机器学习核心思维,构建起立体完备的机器学习概念体系。
通过阅读本书,你将:
熟悉TensorFlow模块中的基本组件
掌握TensorFlow的线性回归技术
学习SVM算法及其实践
使用神经网络优化模型预测
将NLP和情感分析应用到你的数据中
通过实践掌握CNN和RNN
使用梯度提升随机森林算法进行预测
学习TensorFlow产品化
---------------------------TensorFlow自然语言处理---------------------------