基本信息
- 作者: (美)Frank Dellaert(弗兰克.德尔阿特) Michael Kaess(迈克尔.克斯)
- 译者: 刘富强
- 出版社:电子工业出版社
- ISBN:9787121338113
- 上架时间:2018-10-23
- 出版日期:2018 年10月
- 开本:16开
- 页码:164
- 版次:1-1
- 所属分类:工业技术
【插图】

编辑推荐
人工智能领域研究人员、机器人、SLAM研究人员。
内容简介
作译者
Michael Kaess,现于卡内基梅隆大学任助理教授。Michael于2008年在佐治亚理工学院获博士学位,之后于麻省理工学院先后就任博士后与研究员。他目前的研究兴趣包括移动机器人智能问题,具体集中在大规模三维建图与定位问题中的概率图模型与线性代数的联系。
译者简介
刘富强,泡泡机器人创始人。
董靖,美国佐治亚理工学院计算机科学博士,主要研究方向机器人学。
目录
1.1 机器人领域中的推断问题 22
1.2 概率建模 23
1.3 生成模型的贝叶斯网络 24
1.4 指定概率密度函数 26
1.5 在贝叶斯网络中进行模拟 27
1.6 最大后验概率推断 28
1.7 因子图推断 30
1.8 因子图支持的计算 32
1.9 路线图 33
1.10 文献评论 34
第2章 平滑与地图构建 17
2.1 SLAM中的因子图 36
2.2 非线性因子图的最大后验概率推断 37
2.3 线性化 38
2.4 最小二乘问题的直接求解方法 40
2.5 最大后验概率推断的非线性优化 42
2.5.1 梯度下降法 43
2.5.2 高斯–牛顿法 43
2.5.3 列文伯格–马夸尔特算法 43
前言
《机器人感知:因子图在SLAM 中的应用》译稿终于完成了。翻译一本书付出的劳动远远大于阅读一本书。在翻译的过程中,我反反复复阅读原版书籍及翻译版加起来不下30 遍。当将终稿交给编辑时,心里还是满满的收获和兴奋。
2017 年8 月22 日中午13:30,董靖在泡泡机器人微信群中分享了这本由他的老师Frank Dellaert(GTSAM
的作者)和Michael Kaess(iSAM 的作者)合写的书,我没有任何犹豫,当天就给Frank
发了邮件,问他是否可以允许我来翻译这本书。Frank 非常热情地答应了,同时还推荐他的得意弟子董靖跟我一起翻译,并且说,相信我们可以合作得很好。
Frank Dellaert 是佐治亚理工学院的教授,Michael Kaess
从佐治亚理工学院毕业后,去麻省理工学院做了几年博士,目前在卡内基梅隆大学任职。两人都是SLAM 界的大牛,他们的开源的iSAM 和GTSAM
利用因子图对位姿及地图进行高效优化。除了在SLAM 领域,iSAM 和GTSAM
在其他许多机器人领域也得到了非常广泛的应用,如机械臂路径规划、空间–时序重建、大规模三维场景重建等。
目前,市面上关于SLAM 的书非常少。希望本书的出版能够为推动国内SLAM 的研究贡献出一份力量。本书从iSAM 和GTSAM
所用到的理论基础出发,系统、完整地对其进行了介绍,相信大家读完本书后,会对基于因子图的优化有深入的理解。书中不仅有概率推断、贝叶斯网络、因子图、非线性优化、流形及在其上的优化、贝叶斯树、QR
分解、乔里斯基分解、边缘化(Marginalization)等基础知识的讲解,还有增量平滑与地图构建(iSAM)的理论基础的讲解,同时在第7
章还专门介绍了因子图在机器人领域的各种应用案例。
真正理解这本书的一般性内容需要花一些时间,融会贯通则更需要下功夫。在品尝主食(本书)的同时,我们为大家推荐3 个配菜。
1. 源码:iSAM 及GTSAM 的代码均已开源,在看本书的过程中,可以配合源码一起看,这样能够更好地理解本书的理论内容。
2. 在【泡泡机器人SLAM】(ID:paopaorobot_slam)微信公众号上面,搜索董靖讲解的“GTSAM Tutorial”公开课,可以帮助你快速了解GTSAM的整体框架和应用。
3. 在泡泡论坛(http://paopaorobot.org)上进行交流。在看书过程中遇到的任何问题都可以在论坛上提问,只有互相交流才能更好地理解书上的内容。
与董靖合作翻译的过程非常愉快,他是本书作者之一Frank 的弟子,对于本书的内容非常熟悉,我们经常高密度地对有疑问的内容进行讨论,在这个过程中,他也给了我非常多的启发。
在本书的翻译过程中,我得到了很多人的帮助和支持。首先要感谢电子工业出版社的郑柳洁女士及白涛老师,没有你们就没有这本书的面世。郑编辑也为我们处理了所有翻译之外的事情,让我们能不受干扰地完成这本书的翻译。
感谢泡泡机器人学术组织的章国锋老师、黄山老师,以及周平、蔡育展、鲁涛、刘畅、王慧国、陈世浪等同学的反馈意见。
媒体评论
Factor graphs provide a framework for thinking about perception and sensor fusion problems in both Robotics and Computer Vision. We wrote this article to provide a tutorial introduction to factor graphs and how insight in their (sparse) structure leads to efficient sensor fusion algorithms. In addition, we survey several applications in which factor graphs have been used with great success to enable autonomy on the road, in the air, and even underwater. We could not be happier that a Chinese translation of our text will now be available and enable many more people to discover and use factor graphs in their own robotics projects.
——浙江大学 章国锋教授——
近年来增强现实和自动驾驶异常火热,其中的关键技术SLAM 也因而备受关注。SLAM 里的一个核心问题是如何对设备的位姿和构建的地图进行高效优化,而基于因子图的优化是其中常用的方法。本书的作者Frank Dellaert 和Michael Kaess 在SLAM 领域的造诣非常深厚,此书是他们师生二人多年来在因子图上的研究成果的汇集和整理,讲解系统深入,翻译也很到位,是一本非常好的SLAM 方面的书籍。
——MIT Wanda——
“Factor Graphs for Robot Perception” has been meticulously translated by two experts on SLAM technology, Fuqiang Liu of Harbin Engineering University and Jing Dong of the Georgia Institute of Technology. Fuqiang Liu is the founder of the world’s largest think tank on SLAM technology, where he regularly leads SLAM discussions in both English and Chinese. Jing Dong is currently conducting SLAM research led by one of the book’s original English authors, Dr. Frank Dellaert. I highly recommend this translated version of “Factor Graphs for Robot Perception”.
——PerceptIn 创始人,《第1本无人驾驶技术书》作者 刘少山——
Frank Dellaert 与Michael Kaess 是机器人行业大家,他们两位在机器人感知方向有多年经验及很深的理解。本书中,Frank 与Michael 深入浅出地介绍了因子图数学定义、推断方法,以及真实环境中机器人上的各种应用。本书对于希望深入研究SLAM 技术的专业人士很有帮助。对无人驾驶应用感兴趣的读者可以深入了解本书中关于因子图在惯性导航及地图构建方面的应用范例。
——国防科技大学 王维博士——
随着ROS 操作系统的大范围普及,SLAM 这个在学界广泛探讨的话题逐渐褪去神秘面纱,呈现在公众视野中,但是其复杂性往往令初学者望而却步。Frank Dellaert 和Michael Kaess 两位大师是促成SLAM 从经典卡尔曼滤波形式向图优化模型转变的关键人物。本书从因子图的角度出发,以深入浅出的直观概念阐述了图优化模型中的非线性优化算法、稀疏矩阵表示等问题,提供给初学者一把打开SLAM 大门的金钥匙。译者以广博的知识和丰富的经验,将原文的内涵和精髓准确地表达出来,对于国内机器人领域的科技人员和相关从业人员都有非常巨大的帮助和推动作用。
——百度资深研发工程师 刘浩敏——
SLAM 是移动机器人应用中一项至关重要的技术,也是机器人领域一个经典而古老的问题,对此进行的研究已超过30 年,可以说理论已趋于成熟。但在实际应用中,仍难免会遇到各种意想不到的问题。深入理解SLAM 背后的数学原理,是分析、解决这些问题的必经之路。本书深入介绍了SLAM 背后的诸多概率、优化方面的原理和算法,兼具理论和实践价值,值得一读。
——阿里巴巴天猫事业部互动技术专家 蒋佳忆——
本书对SLAM 算法相关的理论和数学基础工具有非常详细的讲解,通俗易懂,且覆盖全面,全书讲授的思路连贯并且具备很好的深度,非常适合对SLAM 算法有一定基础,希望深入学习理论并开展研究工作的同学。整书翻译流畅,逻辑关系清晰,是值得阅读的佳作。
——北京理工大学智能机器人研究所 孔祥战博士——
智能机器人时代的到来,离不开核心技术的支撑,而SLAM 就是其中之一。
它关系到机器人运动时“在哪里,去哪里,如何去”,是机器人运动智能的关键。本书聚焦的基于因子图对机器人位置和姿态及地图构建的高效优化有非常强的科研和应用价值。本书讲解系统深入,是SLAM 领域难得的一本好书。