基本信息
- 作者: 劳拉·伊瓜尔(Laura Igual)
- 出版社:机械工业出版社*
- ISBN:9787111604648
- 上架时间:2018-9-1
- 出版日期:2018 年8月
- 开本:16开
- 版次:1-1
- 所属分类:计算机 > 软件与程序设计
机械工业出版社分类专区 > 机工电工电子分社 > 相关图书
【插图】

编辑推荐
《Python数据科学导论》部分内容已用于西班牙巴塞罗那大学“数据科学和大数据”课程。本书具有如下特色:
1) 提供了许多基于真实世界数据的实际案例研究。
2) 通过使用Python解决数据科学问题的实践经验来加深理解。
3) 介绍了用于统计分析、机器学习、图像分析和并行编程的技术和工具。
4) 回顾了数据科学的一系列应用,包括推荐系统和基于文本数据的情感分析。
5) 在相关网站上提供了补充代码资源和数据(见本书前言)。
内容简介
作译者
Santi Seguí博士是巴塞罗那大学数学和计算机科学系的助理教授。自2007 年起,他担任了西班牙巴塞罗那自治大学的计算机科学工程师。他于2011 年获得西班牙巴塞罗那大学的博士学位。他的研究领域包括计算机视觉、应用机器学习和数据科学。
目录
原书前言
作者和贡献者简介
第1章 数据科学概述 1
1.1 什么是数据科学 1
1.2 关于本书 2
第2章 数据专家的工具箱 4
2.1 引言 4
2.2 为什么选择Python 4
2.3 数据专家的基本Python库 5
2.3.1 数值和科学计算:NumPy和SciPy 5
2.3.2 Scikit-learn:Python中的机器学习库 5
2.3.3 Pandas:Python数据分析库 5
2.4 数据科学生态系统的安装 6
2.5 集成开发环境 6
2.5.1 网络集成开发环境:Jupyter 7
2.6 数据专家从Python开始 7
2.6.1 读取 11
2.6.2 选择数据 13
2.6.3 筛选数据 14
前言
在这个时代,来自不同领域的大量信息被收集和存储,其分析和价值提取已成为公司和社会普遍关注的课题之一。需要多学科团队共同设计方案来解决数据带来的新问题。计算机科学家、统计学家、数学家、生物学家、记者和社会学家以及其他许多人现在一起工作,以便从数据中提供知识。这个新的跨学科领域被称为数据科学(data science)。
任何数据科学都涉及提出正确的问题、收集数据、清洗数据、生成假设、做出推断、可视化数据和评估解决方案等环节。
《Python数据科学导论》的组织和特点
本书是对数据科学的概念、技术和应用的介绍。内容侧重于数据分析,涵盖统计学和机器学习的概念,图像分析技术和并行编程技术以及推荐系统或情感分析等应用。
本书所有章节都通过使用真实数据的实际案例来阐述新概念。本书使用了欧盟统计局、不同的社交网络以及MovieLens等公共数据库。有关数据的具体问题在每章中都有提出。这些问题的解决方案是使用Python编程语言实现的,并在代码框中进行了恰当的展示。这
使得读者可以通过解决问题来学习数据科学,做到举一反三。
本书不打算涵盖整套数据科学方法,也不提供完整的参考文献。目前,数据科学是一个日益增长的新兴领域,因此我们鼓励读者使用网络中的关键词来寻找具体的方法和文献。
目标读者
《Python数据科学导论》面向高年级本科生和一年级的工科研究生。此外,本书还面向参加继续教育短期课程的专业人员和来自不同领域的自学研究人员。
计算机科学、数学和统计学的基本知识是必需的。有Python代码编程背景学习起来会更轻松。但是,即使读者不熟悉Python,也不是问题,因为在短时间内掌握Python的基础知识是可行的。
材料的先前用途
《Python数据科学导论》所提供材料的一部分已用于巴塞罗那大学“数据科学和大数据”(Data Science and Big Data)的研究生课程。本书所有的贡献者都参与了这门课程。
《Python数据科学导论》的使用建议
本书可被用于任何入门的数据科学课程。采用基于问题的方法来引入新概念对初学者来说是有帮助的。针对不同问题实现的代码解决方案对学生来说是一种很好的练习。而且,当学生面对更大的项目时,这些代码可以作为基准。
媒体评论
——Computing Reviews
《Python数据科学导论》是为初步地介绍概念、技术与方法而撰写的,这些促成了科学家与数据科学初的联系……因其叙述风格,我推荐本科生和研究生阅读本书,结束语和参考文献为下一步进行特定主题的研究提供了指导。
——Irina Ioana Mohorianu,zbMATH,卷1365.62003