基本信息
- 作者: [法] 奥雷利安·杰龙(Aurélien Géron)
- 丛书名: O′Reilly精品图书系列
- 出版社:机械工业出版社
- ISBN:9787111603023
- 上架时间:2018-8-21
- 出版日期:2018 年8月
- 开本:16开
- 页码:474
- 版次:1-1
- 所属分类:计算机 > 人工智能 > 综合


【插图】

内容简介
作译者
通过具体的例子、非常少的理论和两个产品级的Python框架——Scikit-learn 和 TensorFlow 。作者帮助你很直观地理解并掌握构建智能系统的概念和工具。你将学习一系列技术,从简单的线性回归开始到深度神经网络等。每章都有习题来帮助你应用学到的知识,你所需要的只是一点编程经验,仅此而已。
- 探索机器学习的全景图,特别是神经网络。
- 使用Scikit-Learn来端到端地建立一个机器学习项目的示例。
- 探索多种训练模型,包括支持向量机、决策树、随机森林和集成方法。
- 使用TensorFlow库建立和训练神经网络。
- 深入神经网络架构,包括卷积网络、递归网络和深度强化学习。
- 学习训练和伸缩深度神经网络的技巧。
- 应用可以工作的代码示例,而无须过多的机器学习理论或算法细节。
本书是关于使用神经网络来解决问题的理论和实践的一本优秀导论。它涵盖了你建立高效应用的关键点,以及足够的背景知识以应对新研究的出现。 我推荐这本书给有兴趣学习用机器学习来解决实际问题的人。
- Pete Warden
- TensorFlow移动端负责人
Aurelien Geron是机器学习方面的顾问。他是Google的前员工,在2013年到2016年领导过YouTube视频分类团队。2002年至2012年,他还是Wifirst公司的创始人和首席技术官,在2001年,他是Ployconseil公司的创始人和首席技术官。
目录
第一部分 机器学习基础
第1章 机器学习概览11
什么是机器学习12
为什么要使用机器学习12
机器学习系统的种类15
监督式/无监督式学习16
批量学习和在线学习21
基于实例与基于模型的学习24
机器学习的主要挑战29
训练数据的数量不足29
训练数据不具代表性30
质量差的数据32
无关特征32
训练数据过度拟合33
训练数据拟合不足34
退后一步35
测试与验证35
练习37
第2章 端到端的机器学习项目39