基本信息
- 原书名:Cloud Computing for Machine Learning and Cognitive Applications

内容简介
作译者
黄铠教授是计算机系统和互联网技术领域的国际知名资深学者。目前,他是香港中文大学(深圳)校长讲座教授,兼任中国科学院云计算中心首席科学家。他拥有加州大学伯克利分校的博士学位,主要研究领域为计算机体系结构、并行与分布式处理、云计算、大数据、物联网、移动互联网、网络安全与人工智能应用等方面,目前主要关注大数据在医疗保健、智慧城市与移动社交网络方面的应用。
加盟香港中文大学与中国科学院之前,他是美国南加州大学(USC)电子工程与计算机科学系的终身教授,现在已从该校退休。他曾在普渡大学任教多年,并先后在清华大学、香港大学、台湾大学和浙江大学担任特聘讲座教授。他在专业领域发表了260篇科学论文,截至2018年4月在谷歌学术搜索中被引次数超过17400次,h指数为55。他是IEEE计算机协会的终身会士。他于2012年获得国际云计算大会(IEEE CloudCom)终身成就奖,2004年获得中国计算机学会(CCF)首届海外杰出贡献奖。
黄教授创作或合著了10余本英文学术专著,被翻译为五国语言。其中,有5本被翻译为中文,包括清华大学出版社出版的《高等计算机系统结构》(1995),以及机械工业出版社出版的《可扩展并行计算》(2000)、《云计算与分布式系统》(2013)与《认知计算与深度学习:基于物联网云平台的智能应用》(2018)等。这些书与本书是配套的关系。此外,他曾担任《并行与分布式计算》(JPDC)杂志主编28年,还曾担任IEEE《云计算会刊》(TCC)、
《并行和分布式系统》(TPDS)、《服务计算》(TSC)以及《大数据智能》杂志的编委。
多年来,黄教授在南加州大学和普渡大学共培养博士生21人,其中4人晋升为IEEE会士,1人为IBM会士。他在IEEE与ACM国际会议和全球领先的大学进行过60多次主题演讲和杰出讲座。他曾在IBM研究院、Intel 公司、富士通研究院、麻省理工学院林肯实验室、加州理工学院喷气推进实验室(JPL)、台湾工业技术研究院(ITRI)、法国国家计算科学研究中心(ENRIA)和中国科学院计算所担任高级顾问或首席科学家。
目录
译者序
前言
作者简介
第一部分 云平台、大数据与认知计算
第1章 云计算系统原理 2
1.1 可扩展计算的弹性云系统 2
1.1.1 云计算的驱动技术 2
1.1.2 可扩展的分布式/并行计算的演化 3
1.1.3 云系统中的虚拟资源 5
1.1.4 云计算与本地计算 7
1.2 云平台架构与分布式系统的比较 8
1.2.1 基本云平台的架构 8
1.2.2 公共云、私有云、社区云和混合云 10
1.2.3 物理集群与虚拟集群 12
1.2.4 云与传统并行/分布式系统的比较 14
1.3 云服务模型、生态系统与可扩展性分析 16
1.3.1 云服务模型:IaaS、PaaS和SaaS 16
1.3.2 云性能分析与可扩展性定理 18
1.3.3 云生态系统与用户环境 20
译者序
本书由武汉大学计算机学院五位教学科研一线的教师翻译。其中,蔡朝晖副教授负责翻译第1章,伍春香副教授负责翻译第2章、第5章,张立强副教授负责翻译第3章、第4章、第8章,袁志勇教授负责翻译第6章、第7章、第9章和前言,杜瑞颖教授负责翻译第10章。杜瑞颖教授和蔡朝晖副教授共同负责翻译索引。最后由袁志勇教授和杜瑞颖教授对全书进行统稿。
本书中文版能够在国内出版,机械工业出版社华章公司做了大量工作,译者在此表示衷心感谢!
由于时间及水平所限,书中译文不当之处,恳请学术界同仁及广大读者批评指正。
译者
2018年3月于武汉
前言
本书英文版在美国南加州大学完成,中文版的翻译由武汉大学计算机学院的五位老师承担:袁志勇,杜瑞颖,张立强,伍春香,蔡朝晖。全书的翻译与校对工作在袁志勇教授和杜瑞颖教授的协调下完成。我在此对他们专业的学术工作与敬业精神表示由衷的感谢。
全书共10章,强调云计算、大数据、物联网、认知计算、机器学习的基本原理与智能应用。本书可作为高等院校与研究院的基础教材,专业领域跨越计算机科学、人工智能、机器学习与大数据。本书之前的版本《云计算与分布式系统》曾作为美国南加州大学、清华大学与武汉大学的教材。我们为授课教师提供配套的课件与习题解答,请访问华章网站(www.hzbook.com)下载教辅资料。
计算机、互联网与人工智能的突飞猛进
自新旧千年交替以来,计算机和信息技术在规模、设备以及平台方面都发生了重大变化。全球数以千计的数据中心正在转化为云端,使数以亿计的个人、企业和政府用户受益。30亿部智能手机正在用于与社交网络云进行互动。所有这些都大大改变了人类的活动和交往。物联网(IoT)和机器智能正在重塑我们的生活方式。这些信息技术的进展正在把我们的社会转变为由许多人工智能(AI)和自动化认知解决方案所支撑的规模经济。事实上,我们正在进入一个拥有云数据分析、智能机器人、机器学习和认知服务的时代。
为实现新的计算和通信模式,我们必须用新功能提升云计算生态系统,这些新功能涵盖机器学习、物联网感知、数据分析以及能模拟或增强人类智能的认知能力。最终目标是建立大数据产业,提供认知服务,在更高的效率下处理劳动密集型任务,从而弥补人类在这方面的缺陷。我们必须设计成功的云系统、网络服务和数据中心,用于存储、处理、学习和分析大数据,以发现新知识或做出重要决策。这些目标可通过硬件虚拟化、机器学习、经训练的深度学习、神经形态计算机架构以及认知服务来实现。例如,新的云服务可以包括学习即服务(LaaS)、分析即服务(AaaS)或安全即服务(SaaS)等。
如今,IT公司、大型企业、大学和政府正逐渐将其数据中心转移到云设施中,以支持移动和网络应用。拥有类似于云的集群架构的超级计算机也正在转型,以处理大数据集或数据流。智能云对于支持社交、媒体、移动端、商业和政府运营的需求量极大。谷歌、亚马逊、微软、脸书、苹果、百度、阿里巴巴、腾讯和IBM等公司正在争相开发物联网设备、智能机器人、自动驾驶汽车、飞行汽车和认知系统。高科技产业正在进入一个挑战与机遇并存的新世界。
本书速览与导读
本书旨在帮助高年级本科生或研究生掌握现代云系统架构、机器学习算法、并行和分布式编程以及用于大数据挖掘、预测分析和认知服务应用的软件工具,并推动大数据和机器智能时代的职业发展和业务转型。它也可以作为专业人士、科学家或工程师的参考书。本书是我过去二十年的研究、教学和授课经验的结晶,读者可利用本书学习云和机器学习方面的技能。本书共四个部分,包含10 章,现简要介绍如下。
第一部分有两章,介绍大数据应用中的云计算、数据科学和自适应计算的基本原理。这两章为后续八章提供了必要的理论基础和技术基础。
第二部分有三章,涵盖云架构、虚拟机、Docker容器、移动云、物联网和多云混搭服务,案例研究包括AWS、谷歌云、微软Azure云、IBM智能云、Salesforce云、SGI Cyclone、苹果iCloud、NASA Nebula云及CERN云。
第三部分有两章,主要介绍机器学习、深度学习、人工智能机器、智能机器人、神经形态处理器、类脑计算机、增强现实(AR)和虚拟现实(VR)的原理, 涵盖谷歌脑计划、DeepMind、X-Lab计划、IBM SyNapse神经形态芯片、Bluemix云和认知计划以及中国的寒武纪神经芯片。
第四部分有三章,介绍关于MapReduce、Hadoop、Spark、TensorFlow和GraphX的云编程范例、软件工具以及应用开发,最后一章专门讨论云性能、隐私和安全问题。所有云系统、编程范例、机器学习方法和软件工具在书中都有具体的应用示例。
将人工智能赋予云端和物联网平台
本书将大数据理论与智能云中的新兴技术相结合,并利用新的应用探索分布式数据中心。如今,信息物理系统(CPS)出现在智慧城市、自动驾驶、情感检测机器人、送货无人机、虚拟现实、增强现实以及认知服务中。为促进智能云或数据中心的有效大数据计算,本书采用技术融合方式将大数据理论与云设计原理及超级计算标准相结合。物联网感知技术可实现大规模的数据采集和筛选。在云端或物联网平台上,机器学习和数据分析有助于智能决策,自动且无人为干预。
拥有AI特性的增强云和超级计算机是我们的根本目标。这些人工智能和机器学习任务在实际中的应用由Hadoop、Spark和TensorFlow程序库支持。数据分析师、认知科学家和计算机专业人士须共同努力解决实际问题。这种协作学习必须包含云端、移动设备、数据中心和物联网资源,最终目标是发现新知识或者做出重要决策。多年以来,我们一直在探索如何建造类脑计算机,它能在感知、记忆、识别和理解中模仿或增强人类功能。
当今,谷歌、IBM、微软、脸书、中国科学院以及百度都在探索云计算、机器学习和物联网应用中的人工智能。本书涵盖一些新的神经形态芯片和领先的研究中心构建的软件平台,它使认知计算成为可能。本书考察了在硬件、软件和生态系统方面的进步,不仅注重机器学习技术,包括模式识别、语音/图像理解以及低成本、低功耗需求的语言翻译和理解,而且强化了用手机、机器人、物联网平台、数据中心以及云计算构建未来网络空间的新方法。
读者对象和教师指南
本书是为满足日益增长的计算机科学和电气工程教育课程的需求而编写的。教师可选择与课程相适应的不同章节进行讲授,从而满足各层次学生的需求。本书适合在高年级本科生和研究生的教学中使用,同时,也能帮助那些希望增进技能以迎接新的IT技术挑战的计算机专业人士。
讲授云计算课程应至少覆盖8章。如果教学课时有限,可跳过第2章和第7章。对于机器学习课程,可跳过第3章或第10章。对于高年级本科生课程,讲授7章(1,2,3,4,5,6,8)足够。任何课程都要覆盖云计算和机器学习两个主题,此外,本书也适合作为大数据科学、物联网应用和分布式计算课程的参考书。
书摘
混搭服务质量(QoMS)。QoS为直接评估复合混搭服务的不同性能的度量属性。以“网上医疗保健计划者”为例,对每个任务可以考虑等待时间、服务时间、成本、声誉、可靠性和可用性。响应时间是QoS的一个主要因素,当一个用户访问服务时,需要占据流量,并且对服务质量有一定的影响。注册会计师计算出的组合服务期限既不是最优的,也不是实际持续时间,但是是至今为止组成过程中最好的一个评估方法。综合业务、等待时间、服务时间和成本不仅依赖于它的基本任务,还有两者之间的操作;而信誉、可靠性和可用性是来自其基本属性。
体验质量(QoE)。客户对组合服务提供的解决方案的满意度是对QoE的一个关键评估因素。例如,规划者所做的整个医疗计划是复合服务的解决方案,医疗计划的质量取决于每个任务ti的解决方案,也就是说,取决于医疗应用、云服务提供商等。人们可能会认为,“口碑”可用于评估用户满意的程度,但它是在服务方面,而不是在解决方案方面。
疏忽的原因之一是部分组成服务不提供“解决方案”。我们出于这个原因考虑QoE。首先,越来越多的实际应用落人解决方案相关的类型。其次,更多的概率和客户的评分都是可得到的。最后,可以启用更多的交互方式,一个客户可以在该组合过程中评价组合服务的不同部分。
我们将QoE的标准定义为服务解决方案的满意度百分比。作为节点标记,每种解决方案被赋予一个得分,表示客户指定解决方案的质量。评价解决方案质量的方法分为两类:基于统计的或基于利益的。基于统计的方法可以根据用户投票或者审查评论进行评分。基于利益的方法动态估计客户的满意度,例如两两进行比较,并保持用户特定的配置文件。还可使用二者结合的方法,标签服务分数可以脱机或联机提供,分数可以预先设置或在该组合过程中动态产生。
……