基本信息
【插图】

编辑推荐
本书采用独创的黑箱模式、MBA案例教学机制,结合大量的经典案例,介绍TensorFlow系统和常用的深度学习算法、神经网络模型,以及它们在量化分析当中的具体应用。
《零起点TensorFlow与量化交易》仅仅作为入门课程,具体的实盘策略,有待广大读者通过进一步深入学习TensorFlow、PyTorch、MXNet等新一代深度学习平台来获得。更重要的是,还有待广大的一线实盘操作人员结合专业的金融操盘经验,与各种神经网络模型融会贯通,构建更加符合金融量化实际应用的神经网络模型,从而获得更好的投资回报。
内容简介
计算机书籍
Python量化回溯、TensorFlow、PyTorch、MXNet深度学习平台以及神经网络模型,都是近年来兴起的前沿科技项目,相关理论、平台、工具目前尚处于摸索阶段。
TensorFlow是近年来影响大的神经网络、深度学习平台,本书从入门者的角度,对TensorFlow进行了介绍,《零起点TensorFlow与量化交易》中通过大量的实际案例,让初学者快速掌握神经网络和金融量化分析的基本编程,为进一步学习奠定扎实的基础。
《零起点TensorFlow与量化交易》中的案例、程序以教学为主,且进行了高度简化,以便读者能够快速理解相关内容,短时间了解Python量化回溯的整个流程,以及数据分析、机器学习、神经网络的应用。
《零起点TensorFlow与量化交易》仅仅作为入门课程,具体的实盘策略,有待广大读者通过进一步深入学习TensorFlow、PyTorch等新一代深度学习平台来获得。更重要的是,广大的一线实盘操作人员需要结合专业的金融操盘经验,与各种神经网络模型融会贯通,构建更加符合金融量化实际应用的神经网络模型,从而获得更好的投资回报收益。
作译者
研究成果有:BigQuant理论架构:Python量化+数字货币+人工智能;“小数据”理论,GPU超算工作站、MTRD多节点超算集群算法、“1+N”网络传播模型、人工智能“足彩图灵法则”等;论文《人工智能与中文字型设计》是中文字库行业三大基础建模理论之一。
目录
1.1 TensorFlow要点概括 2
1.2 TensorFlow简化接口 2
1.3 Keras简介 3
1.4 运行环境模块的安装 4
1.4.1 CUDA运行环境的安装 4
案例1-1:重点模块版本测试 5
案例1-2:GPU开发环境测试 8
1.4.2 GPU平台运行结果 9
第2章 无数据不量化(上) 12
2.1 金融数据源 13
2.1.1 TopDat金融数据集 14
2.1.2 量化分析与试错成本 15
2.2 OHLC金融数据格式 16
案例2-1:金融数据格式 17
2.3 K线图 18
案例2-2:绘制金融数据K线图 19
2.4 Tick数据格式 22
案例2-3:Tick数据格式 23
2.4.1 Tick数据与分时数据转换 25
前言
AlphaGo与柯洁的黑白大战,因为对阵的一方是中国顶级围棋高手柯洁,所以引起国人的高度关注。利用百度搜索引擎输入AlphaGo,一度可以得出7000多万条搜索结果,这远远高于其他热门词条。
事实上,AlphaGo只是Google拥有的两套人工智能系统中的一套。它是Google 2014年收购的DeepMind的人工智能系统,专注于棋赛开发。Google的另外一套人工智能系统就是本书介绍的TensorFlow系统。
在TensorFlow等人工智能系统出现之前,计算机所做的事情往往是简单重复的。计算机会按照人类编好的既定程序,简单重复、按部就班地运行,没有超越人类事先为其设定的思维边界。
计算机与人类的大脑相比,根本的区别在于不具备学习和创新能力。
计算机顶多也就是记忆的信息多,重复计算的速度快,不受情绪的影响等。但是,在TensorFlow等人工智能系统出现之后,计算机所做的事情除简单重复运行之外,更重要的是其具备了一定的自我学习和创新能力。
TensorFlow等人工智能系统使得计算机在一定程度上能够自主学习,自我提高,总结过去的经验,汲取以往的教训,具备一定的创新性。这一点在AlphaGo与柯洁对垒的3场棋局的结果中不难看出。
这正是以AlphaGo和TensorFlow为代表的人工智能系统区别于以往任何计算机技术的关键所在,也是TensorFlow被称为互联网以来唯一的“黑科技”项目的原因。
具备了一定的自我学习和创造能力的人工智能系统的出现,将对经济系统的各个领域产生重大影响。笔者有着超过20年境内外金融行业从业经历,将从一个侧面分享人工智能对金融领域的影响。
从整个金融业的历史沿革来看,这大致经历了4个阶段:纯人工阶段、单机电脑阶段、互联网(含移动互联网)阶段和人工智能阶段。
随着每个阶段的渐次演进,提供金融服务一方的人力成本投入在逐渐减少,提供金融服务的效率在提高;对于接受金融服务的一方来说,金融服务的可获得性,以及便捷程度在逐渐增加,金融服务越来越围绕着人进行,以人为中心的全方位的社会经济服务体系正在形成。
在金融服务体系中,银行服务、证券服务、保险服务等的内部界限开始变得模糊,金融服务与其他非金融的社会经济服务之间的界限开始变得不清。
特别是金融业进入人工智能阶段之后,人工智能系统将接受金融服务一方的身份特征数据、交易数据和行为数据等大数据,进行实时分析和动态跟踪,以远低于人工成本的成本,为每个人建立一个基于生命周期的综合金融模型,对每个人未来的金融行为进行预测,自动为他们提供账户资金管理、货币兑换、证券买卖、保险购买、购房购车计划、旅行休闲、子女教育、养老规划等方面的金融建议和授权代理操作,并将模型预测结果与实际情况相比对,自主学习和修正模型,以便更加贴合接受金融服务一方的真实金融意图,使得人工智能模型的预测建议和人的实际金融行为无限接近。
由此人类将从日常繁杂的各种金融交易中解放出来,投身到更需要自己或自己更感兴趣的方面。
展望未来,人工智能的应用前景无限美好;探寻当下,人工智能在世界各地的各行各业方兴未艾。
千里之行,始于足下。何海群先生的《零起点TensorFlow与量化交易》是有志于人工智能领域的IT人士的一块敲门砖和铺路石。
祝愿人工智能在华夏大地生根发芽,开花结果。
梁忠
梁忠:中国人民大学财政金融系博士,曾任里昂证券CLSA分析员;瑞银证券UBSS董事,财富管理中国研究部主管;瑞士信贷(香港)有限公司中国研究部董事;瑞信方正证券执行董事,研究部主管,具有20年国际顶级金融机构从业经历。