基本信息
编辑推荐
★ 数据科学流程概览,并通过Julia实现一个示例,说明了其中的关键点。
★ Julia IDE的选择。
★ 程序结构与函数。
★ 数据工程中的任务,如数据导入、数据清理、数据格式化和数据存储,以及如何执行数据预处理。
★ 数据可视化,以及一些简单但非常强大的用来进行数据探索的方法。
★ 数据降维和特征评价。
★ 各种机器学习方法,从非监督式学习(不同类型的聚类方法)到监督式学习(决策树、随机森林、
基础神经网络、回归树和极限学习机)。
★ 图分析,包括找出不同实体之间的联系以及如何对其进行挖掘以获取有用的知识。
本书主要内容包括:
本书的目标是教你如何使用Julia语言来应对现实世界中数据科学的艰巨挑战。在介绍了Julia对于数据科学社区的重要性和若干数据科学基本准则之后,本书讲解了Julia基础知识,包括如何安装Julia及其功能强大的程序库。本书通过丰富的示例展示了如何使用Julia命令、数据集和函数。
本书介绍并描述了专用的脚本和软件包。针对在数据科学流程中经常会遇到的问题,本书提供了有代表性的实用示例,并引导你通过Julia使用公开的数据集来解决这些问题。在很多情况下,使用现成的软件包和内置函数就可以完成任务。
本书每一章都包括一些思考题和练习,来帮助你加强学习效果,指导你使用Julia从头开始创建一个数据科学应用。
内容简介
计算机书籍
数据科学通过各种统计学和机器学习的技术与方法,将数据转换为有用的信息或知识。Julia是一种在数据科学领域逐渐流行起来的语言。
《Julia数据科学应用》会提出一系列在数据科学流程中常见的、有代表性的实际问题,并指导读者使用Julia去解决这些问题。全书共13章,涵盖了Julia基础知识、工作环境搭建、语言基础和高 级内容、数据科学应用、数据可视化、机器学习方法(包括无监督式学习方法和监督式学习方法)、图分析方法等重要的话题。附录部分给出了学习和使用Julia的一些有用的参考资料,还给出了各章的思考题的答案。
本书适合对数据科学的知识和应用方法感兴趣的读者阅读,特别适合有志于学习Julia并从事数据科学相关工作的人员学习参考。
作译者
目录
1.1 Julia如何提高数据科学水平 2
1.1.1 数据科学工作流程 3
1.1.2 Julia被数据科学社区接受的过程 5
1.2 Julia 扩展 6
1.2.1 包的质量 6
1.2.2 找到新的包 6
1.3 关于本书 7
第 2章 建立数据科学工作环境 9
2.1 Julia IDE 9
2.1.1 Juno 10
2.1.2 IJulia 11
2.1.3 其他IDE 12
2.2 Julia扩展包 13
2.2.1 找到并选择扩展包 13
2.2.2 安装扩展包 14
2.2.3 使用扩展包 15
2.2.4 破解扩展包 16
2.3 IJulia基础 16
2.3.1 文件处理 16