基本信息
内容简介
目录
第1章 绪论
1.1 机器学习概念
1.1.1 学习的定义
1.1.2 学习问题的一般描述
1.1.3 学习的实现
1.1.4 学习的基本形式
1.1.5 学习在数据降维上的应用
1.2 机器学习中的核学习
1.2.1 线性特征提取算法及存在的问题
1.2.2 核的引入
1.2.3 主要核学习算法
1.3 核学习的研究现状
1.4 核学习存在的问题
第2章 核学习的数学基础
2.1 核理论基础
2.1.1 再生核理论
2.1.2 Mercer定理
2.2 多项式空间和多项式核函数
2.2.1 有序齐次多项式空间
前言
近年提出的核学习是模式识别的重要研究分支和活跃的研究主题,出现了大量理论和实际应用研究成果,已广泛用于模式识别、数据挖掘、计算机视觉、图像与信号处理等研究领域。核方法在一定程度上解决了实际应用中的非线性问题,大大提高了实际系统的识别正确率、预测精度等性能指标。然而,核学习方法仍然面临着一个重要问题,即核函数及其参数的选择问题。研究表明,核函数及参数直接影响非线性特征空间内数据分布结构,不恰当的核函数及参数选择直接影响核学习器性能。研究核函数及参数的自适应学习对于解决目前核学习方法广泛面临的核选择问题具有重要理论研究意义,对于提高核学习器的应用系统性能具有重要实际意义。因此,核自适应学习是一个兼具理论价值和实际意义的研究主题。
近年来,作者在模式识别中的核自适应学习方法及应用方面开展了不懈的探索研究,本书综合展现了作者在该领域研究过程中的最新研究成果。本书以模式识别中的核自适应学习及应用为研究对象,结合作者自己的研究成果和文献调研,介绍了核自适应学习及在人脸识别、医学图像分类和三维碎片分类等各个方面的应用。旨在帮助读者透彻理解和掌握核自适应学习的基本原理和方法,并了解核自适应学习在图像分类及三维数据分类上的应用,为深入研究模式识别领域的核学习问题提供技术支撑。
在研究过程中先后得到了国家自然科学基金(编号61001165)、黑龙江省自然基金(编号QC2010066)、哈工大基础人才培育项目(编号HIT.BRETIII.201206)以及总装预研基金等10项国家和省部级科研项目的资助,再次表示衷心的感谢。
由于核自适应学习领域的研究发展迅速,加之作者水平有限,错误之处在所难免,恳请读者批评指正。
作 者
2013年8月 于哈尔滨工业大学