基本信息
- 原书名:Multivariate Time Series Analysis:With R and Financial Applications
- 作者: (美)蔡瑞胸(Ruey S. Tsay)
- 译者: 张茂军 李洪成 南江霞
- 丛书名: 华章数学译丛
- 出版社:机械工业出版社
- ISBN:9787111542605
- 上架时间:2016-8-5
- 出版日期:2016 年8月
- 开本:16开
- 版次:1-1
- 所属分类:数学 > 文科、经管、金融、工程数学 > 经济数学
教材

内容简介
目录
前言
致谢
第1章多元线性时间序列
1.1 引言
1.2基本概念
1.2.1平稳性
1.2.2线性
1.2.3可逆性
1.3交叉协方差和相关矩阵
1.4样本CCM
1.5零交叉相关性的检验
1.6预测
1.7模型表示
1.8本书的结构
1.9软件
练习
参考文献
第2章平稳向量自回归时间序列
2.1引言
前言
多元时间序列分析为处理隐藏于具有时间和横截面相依性的多维度量中的信息提供有效的工具和方法。数据分析的目标在于更好地理解变量之间的动态关系以及提高预测的准确性。本书所涉及的模型可以用于策略模拟或者推理。由于线性模型易于理解且应用广泛,所以本书主要研究线性模型。本书努力对理论和应用进行平衡,并尽量让书中的记号一致。同时,也尽力使本书能自我包含。然而,由于这个学科本身的复杂性,所以书中选取主题的涵盖深度可能有所不同。一方面,这也代表了我个人的喜好和对这些主题的理解;另一方面,我也希望本书的篇幅在合理的范围之内。
当前,高维度数据分析领域,特别是相依数据,仍然在快速发展着。因此,此类书籍难免忽略一些重要的主题或者方法。例如,本书没有包括非线性模型的内容,也没有对分类数据时间序列(categorical time series)进行讨论。读者可以查看最新的文章或者杂志来获取该方面的相关文献。
本书首先在第1章给出了多元时间序列的一些基本概念,包括评估以及量化时间和横截面相依性。随着数据维度的增加,呈现多元数据的难度也明显增大。我尽力以精简的方式来进行呈现。在某些情况下,给出了标量汇总统计数据。第2章重点介绍向量自回归(VAR)模型,尽管有所争议,但它们是应用最为广泛的时间序列模型。本书的目的是尽力使这一章内容丰富,以飨对VAR模型感兴趣的读者。本章涵盖了分析VAR模型的贝叶斯方法和经典方法。第3章学习向量自回归移动平均(VARMA)模型。首先,介绍向量移动平均模型(VMA)的性质以及模型估计。随后,分析VARMA模型的识别,并介绍该模型的性质。第4章探索多元时间序列的结构设定。介绍探寻隐藏在向量时间序列中简化结构的两种方法。这两种方法可以让用户发现多元线性时间序列的框架(skeleton)。第5章介绍单位根非平稳性和协整关系。它包括理解单位根时间序列的基本理论和一些相关应用。第6章介绍因子模型和一些特选的多元时间序列主题。这里研究了经典因子模型与近似因子模型。本书的目标是涵盖目前文献中出现的所有因子模型并给出这些因子模型之间的关系。第7章主要介绍多元波动率模型。它涵盖了相对容易应用且产生正定波动率矩阵的波动率模型。本章还给出了检测向量时间序列的条件异方差性的方法和检验拟合多元波动率模型的方法。全书贯穿实际应用的例子来说明分析方法。每章中都给出了对实证向量时间序列分析的练习。
软件是多元时间序列分析必不可少的一部分。如果没有软件包,多元时间序列就成为纯理论的练习。本书尽我所能编写R程序包,以方便读者应用书中讨论的方法和模型。所有的程序都放在R语言的MTS添加包中。应用这个R添加包和其他已有的R包,读者可以重现书中的所有分析。我并不是一个专业的程序员,MTS添加包中的许多代码也许不是特别有效,它们或许有瑕疵,欢迎对本书R添加包或者其他内容的任何建议和改正。
Ruey STsay(蔡瑞胸)
伊利诺伊,芝加哥,2014年9月
序言
多元时间序列是结构比较复杂的数据,其理论较为难懂,符号表示复杂。本书应用大量的实际例子,通过开发一个R软件包来展示书中的方法,读者可以结合实际应用来学习本书所讨论的方法和模型。
本书的翻译得到了国家自然科学基金(项目编号71461005)和广西高校数据分析与计算重点实验室的资助。特别感谢桂林电子科技大学数学与计算科学学院的研究生王文华、卞琪、李婷婷、陆任智和聂骏程同学为翻译本书所做的出色工作。在本书的翻译过程中,得到了王春华编辑的大力支持和帮助。本书责任编辑盛思源老师具有丰富的经验,为本书的出版付出了大量的劳动。这里对她们的支持和帮助表示衷心的感谢。
由于时间和水平所限,难免会有不当之处,希望同行和读者多加指正。