基本信息
【插图】

编辑推荐
中兴大数据平台DAP团队诚意之作大数据实践指南结合案例 总结大数据建设实践中的经验与知识
内容简介
计算机书籍
如果你是一名IT工程师,CTO希望你在一周内提交一份公司未来IT系统基础架构的初步建议;
如果你是一位IT营销人员,客户需要你在一周内向他汇报未来大数据系统的大致技术方向;
……
在这个信息严重过剩的时代,一周内从浩渺的技术细节的海洋中抓住关键的技术脉络,并进一步提出有一定理论依据的技术思考,这几乎是不可能完成的任务。
您是否想过阅读一本关于大数据的图书帮助解决如上问题?
浩如烟海的大数据领域图书可以大致归纳为三类:第一类是描述大数据的应用前景与社会意义;第二类是研讨大数据作为一个大型IT系统的系统架构与技术架构;第三类是研讨大数据领域的具体技术,例如HADOOP相关的编程等。
对于需要快速掌握大数据系统技术脉络,或者是需要对未来IT系统做系统思考的技术工作者来说,最需要的是第二类图书所提供的系统化知识。但目前业界大数据相关的书籍与资料,大多是第一类与第三类,第二类非常稀少,以至于某些希望开展大数据课程教学的高校难以找到合适的教材与参考数据。通过阅读本书,您将可以迅速建立大数据技术架构相关的知识与脉络,而不是迷失在浩如烟海的知识细节中。
本书的目的就是为了帮助读者在最短的时间内,系统地把握大数据相关的技术框架,建立系统架构级别的技术思考能力与原则。本书适用于企业的IT与大数据的从业人员,IT与大数据相关的销售人员,企业的首席技术官(CTO)、首席信息官(CIO),由于本书在大数据知识具备系统性,也可以作为高校大数据方面课程的教材或辅导书。
作译者
目录
第1章 大数据概述 3
1.1 什么是大数据 4
1.2 大数据的本质 6
1.3 大数据技术当前状态 8
1.4 大数据的技术发展趋势 11
第2章 大数据项目常见场景 13
2.1 实验型部署场景 14
2.2 中小型部署场景 16
2.3 大型部署场景 19
第3章 大数据方案关键因素 23
3.1 数据存储规模与数据类型 24
3.2 数据来源与数据质量 25
3.3 业务特征 26
3.4 经济可行性 27
3.5 运维管理要求 28
3.6 安全性要求 29
3.7 部署要求 31
3.8 系统边界 32
3.9 约束条件 34
前言
大数据相关技术就是在这种情况下应运而生的。作为一门新兴技术,大数据技术被人熟知和掌握需要一个过程;同时,由于其始终处于一个高速发展的过程,对其认识也是不断修正提高的过程。
鉴于此,本书总结了中兴通讯大数据平台DAP团队对大数据技术的最新研究成果,结合中兴大数据平台在各行业的应用实践经验,旨在帮助读者建立系统化的大数据技术脉络,并针对业界一些似是而非的问题进行系统性的讲解与澄清。阅读完本书,读者就可以基本掌握大数据技术的系统架构和核心思想。
为何要写这本书
在大数据项目建设过程中,往往需要三个层次的知识。第一个层次是关于大数据是什么,能做什么等理念方面的知识;第二个层次是如果去端到端进行大数据方案设计,要厘清大数据方案所需的关注重点,并结合具体的实践案例进行说明;第三个层次是大数据相关的基础技术知识,例如,对HDFS、MR、SPARK等技术点的掌握。
第一个层次的书籍,业界已经有很多,其中以《大数据时代》为典型代表;第三个层次的书籍,业界也比较多,读者不难获得相关的学习材料。
但第二个层次的书籍,属于承上启下的层次。该层次的知识需要从实践中总结出经验与知识。由于大型项目的建设周期长,建设复杂度高,涉及面广,所以从大型项目的实践中总结出知识有较高的难度。鉴于此,市面上该层次的大数据书籍相对较少,大数据相关的从业者或建设者较难获得这方面的知识,往往只能通过各类交流活动获取这方面的知识,不仅费时费力,而且难以将这些知识系统化。
基于如上原因,我们感觉迫切需要将我们在大型项目中积累的经验总结出来,供业界同仁参考,同时,这也可以满足我们内部人员学习大数据相关知识的需求。
本书读者对象
如果您是IT市场营销人员,或者是企业IT主管,您可以直接阅读本书的第一部分与第三部分。通过对本书第一部分与第三部分的阅读,将帮助您建立起大数据技术概念和框架。如果您对具体的大数据技术不感兴趣,可以忽略掉第二部分纯技术的内容。
如果您是大数据技术人员,本书将会是一本较好的参考资料,有助于帮助您超越自己所从事的具体模块,将您的大数据知识体系系统化。
如果您是高校大数据相关课程的老师,由于本书较为系统,可以考虑将本书作为参考书或者教材。
如果您是大数据技术爱好者,也可以将本书作为泛读书籍,让您理解当前大数据的时代。当然,读者如果能具备一定的IT基础知识,将能够更好地汲取本书中的知识。这不仅有助于您快速理解大数据相关知识,也有助于启发您对特定专题的深入思考和独到分析。
本书特色
本书是首本系统化的方案实践方面书籍,系统化地阐述了大数据方案应该如何思考,以及大数据的技术基础知识,并辅以实际的案例进行说明。
以客户化的语言,描述大数据项目建设中应该重点考虑的问题。即使不是技术专家,也能很容易地理解本书第一部分的内容。
较为系统地阐述了大数据相关的体系,可以帮助读者迅速系统化大数据相关的知识。
结合实际的案例,总结在大数据建设实践中的经验与知识。
如何阅读本书
本书内容分为四大部分,不同的读者可以选择不同的内容进行阅读。
序言
数据并不是一个新概念,几千年来我们一直在利用数据。但数据的价值,特别是大数据的价值,最近几年才成为公众关注的焦点,是有其时代背景的。
就如同石油在几千年前就被发现了,但是其用途一直是作为日常生活或战争中的燃料,并不是特别重要的战略物资。只有内燃机被发明后,石油才成为最重要的动力能源,在最近的一百年才成为战略物资。
数据也一样。传统的数据库技术,在数据处理的能力上都有很大的局限性,超过100T这个量级,要么是处理效率急剧降低,要么是系统成本上升到难以接受的昂贵程度。所以,在大数据时代之前,数据在生产系统中的使用目的往往是单一的、即时的。大量的历史数据与过程数据,按照当时的IT技术,既无法存储,更无法处理。那些被备份到磁带机上的数据,大部分都成为死亡的数据化石。
当前大数据处理的技术,特别是云存储与云计算技术的成熟应用,为大数据的存储与处理提供了技术可能性。企业可以利用生产系统以及管理系统中产生的大量数据,对海量的数据进行存储、挖掘分析。一方面可以对生产活动进行更为准确的预测与指导,从而提高企业生产活动的准确性;另一方面还可以通过对数据价值的挖掘,产生新的业务,帮助企业充分开发数据的价值。政府也可以利用大数据来提高管理水平和效率。
2014年Gartner发布的HypeCycle曲线中,大数据技术已经越过炒作顶点。从HypeCycle曲线来看,越过炒作顶点的技术,往往是已经满足技术可行性的技术。技术进展并辅以商业模式创新,大数据在部分细分市场已经具备商业可行性,可以为企业的现在与未来带来收益。
2015年8月国务院发布了《促进大数据发展行动纲要》,将大数据的应用与落地提升到国家层面。在这种背景下,当前大数据系统建设出现一波高潮。商业级的大数据系统建设周期长,复杂度高,资金投入量大,所以需要合理的系统架构以应对未来业务需求的变化。由于业界大数据系统的建设刚起步,当前阶段急需对相关的系统架构知识以及实际项目建设经验进行共享,提升业界的整体建设水平。
大数据架构师指南
纵观当前业界大数据相关的书籍,偏重于两大类型。其一是偏重于大数据理念,描绘大数据前景,说明大数据可以有哪些应用;其二是偏重于大数据基础知识,偏重于实际的编程与开发。
.但在大数据项目的实际建设过程中,架构师在进行端到端方案设计时,需要对大数据庞大的知识体系进行总揽性把握,并辅以实际项目的经验,才有可能把握此类系统的关键需求与要点。而此类的知识与经验,业界分享较少,只能通过各类交流活动才能获取,不仅费时费力,而且还很难将这些知识系统化。
中兴通讯作为业界知名企业,在大数据研发上投入大量资源,并具备丰富的实际工程经验。本书不仅针对大数据知识进行系统化概述,并且将实际大型项目的经验进行总结。这种无私分享的宝贵经验,正是业界所亟需的,对大数据从业者具备较好的参考价值。相信本书分享的知识与经验,对推动大数据应用与落地起到积极的促进作用。
中兴通讯股份有限公司总裁
赵先明