- 定价:¥69.00
- 校园优惠价:¥43.47 (63折) (马上了解)
- 评分:
(已有1条评价)
- 电子书:MATLAB数据分析与挖掘实战
- 促销活动:
- 我要买:
基本信息

编辑推荐
通过10余个真实的案例为10余个行业的数据挖掘提供了解决方案,并提供相关的建模文件和源代码
内容简介
计算机书籍
这是一本权威的以实践为导向的 MATLAB数据挖掘实战指南,作者结合自己10余年的数据挖掘工程实践和教学经验,以真实案例为主线,不仅深入浅出地讲解了数据挖掘建模过程中的各个环节和各项技术 (如数据探索、数据预处理、分类与预测、聚类分析、时序预测、关联规则挖掘、智能推荐、偏差检测等),而且还为电力、航空、医疗等10余个行业的数据挖掘提供了方法指导和解决方案。此外,本书还深入讲解了数据挖掘的二次开发等内容。
为了便于学习,图书的编排以解决某个应用的挖掘目标为前提,先介绍案例背景提出挖掘目标,再阐述分析方法与过程,最后完成模型构建,在介绍建模过程中穿插操作训练,把相关的知识点嵌入相应的操作过程中。本书配套提供了真实的原始样本数据文件及数据探索、数据预处理、模型构建及评价等不同阶段的MATLAB代码程序。为方便教师授课需要,图书还特意提供了建模阶段的过程数据文件、PPT课件,以及基于 MATLAB、SAS EM、SPSS Modeler、R、 TipDM等上机实验环境下的数据挖掘各阶段程序模型及相关代码。
作译者
目录
基础篇
第1章 数据挖掘基础 2
1.1 某知名连锁餐饮企业的困惑 2
1.2 从餐饮服务到数据挖掘 3
1.3 数据挖掘的基本任务 4
1.4 数据挖掘的建模过程 4
1.4.1 定义挖掘目标 5
1.4.2 数据取样 5
1.4.3 数据探索 7
1.4.4 数据预处理 7
1.4.5 挖掘建模 7
1.4.6 模型评价 7
1.5 常用的数据挖掘建模工具 8
1.6 小结 9
第2章 MATLAB数据分析工具箱简介 10
2.1 MATLAB的安装 10
2.2 MATLAB使用入门 11
2.2.1 MATLAB R2014a操作界面 11
2.2.2 MATLAB常用操作 13
前言
LinkedIn 对全球超过3.3亿用户的工作经历和技能进行分析后得出,在目前最炙手可热的25项技能中,数据挖掘人才需求排名第一。那么数据挖掘是什么?
数据挖掘是从大量数据(包括文本)中挖掘出隐含的、先前未知的、对决策有潜在价值的关系、模式和趋势,并用这些知识和规则建立用于决策支持的模型,以及提供预测性决策支持的方法、工具和过程。数据挖掘有助于企业发现业务的趋势,揭示已知的事实,预测未知的结果,因此“数据挖掘”已成为企业保持竞争力的必要方法。
但和国外相比,我国由于信息化程度不太高,企业内部信息不完整,所以零售业、银行、保险、证券等行业对数据挖掘的应用并不太理想。但随着市场竞争的加剧,各行业对数据挖掘技术的意愿越来越强烈,可以预计,未来几年,各行业的数据分析应用一定会从传统的统计分析发展到大规模的数据挖掘应用。在大数据时代,数据过剩、人才短缺,数据挖掘专业人才的培养又需要专业知识和职业经验的积累。所以,本书注重数据挖掘理论与项目案例实践相结合,可以让读者获得真实的数据挖掘学习与实践环境,更快、更好地学习数据挖掘知识与积累职业经验。
总的来说,随着云时代的来临,大数据技术将具有越来越重要的战略意义。大数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产要素,人们对于海量数据的运用预示着新一轮生产率增长和消费者激增浪潮的到来。大数据分析技术将帮助企业用户在合理的时间内攫取、管理、处理、整理海量数据,也为企业经营决策提供积极的帮助;大数据分析作为数据存储和挖掘分析的前沿技术,广泛应用于物联网、云计算、移动互联网等战略性的新兴产业。虽然大数据目前在国内还处于初级阶段,但是其商业价值已经显现出来,特别是有实践经验的大数据分析人才更是各企业争夺的热门。为了满足日益增长的大数据分析人才的需求,很多大学开始尝试开设不同程度的大数据分析课程。“大数据分析”作为大数据时代的核心技术,必将成为高校数学与统计学专业的重要课程之一。
本书特色
本书作者从实践出发,结合大量数据挖掘工程案例及教学经验,以真实案例为主线,深入浅出地介绍数据挖掘建模过程中的有关任务:数据探索、数据预处理、分类与预测、聚类分析、时序预测、关联规则挖掘、智能推荐、偏差检测等。因此,本书的编排以解决某个应用的挖掘目标为前提,先介绍案例背景并提出挖掘目标,再阐述分析方法与过程,最后完成模型构建,在介绍建模的过程中穿插操作训练,把相关的知识点嵌入相应的操作过程中。为方便读者轻松地获取一个真实的实验环境,本书使用大家熟知的MATLAB工具对样本数据进行处理以进行挖掘建模。
为了便于读者对案例的理解,本书提供了真实的原始样本数据文件及数据探索、数据预处理、模型构建及评价等不同阶段的MATLAB代码程序,读者可以从全国大学生数据挖掘竞赛网站(http://www.tipdm.org/ts/578.jhtml)免费下载。另外,为满足教师授课的需要,本书还特意提供了建模阶段的过程数据文件、PPT课件,以及基于MATLAB、SAS EM、SPSS Modeler、R、TipDM等上机实验环境下的数据挖掘各阶段程序/模型及相关代码,读者可通过热线电话(40068-40020)、企业QQ(4006840020)或以下微信公众号TipDM(或微信号Tip DataMining)咨询获取,同时也可通过上述联系方式咨询本书的相关问题。
本书适用对象
开设数据挖掘课程的高校教师和学生。
目前国内不少高校将数据挖掘引入本科教学中,在数学、计算机、自动化、电子信息、金融等专业开设了与数据挖掘技术相关的课程,但目前这一课程的教学仍然主要限于理论介绍。因为单纯的理论教学过于抽象,学生理解起来往往比较困难,教学效果也不甚理想。本书提供的基于实战案例和建模实践的教学,能够使师生充分发挥互动性和创造性,理论联系实际,达到最佳的教学效果。
需求分析及系统设计人员。
这类人员可以在理解数据挖掘原理及建模过程的基础上,结合数据挖掘案例完成精确营销、客户分群、交叉销售、流失分析、客户信用记分、欺诈发现、智能推荐等数据挖掘应用的需求分析和设计。
数据挖掘开发人员。
这类人员可以在理解数据挖掘应用需求和设计方案的基础上,结合本书提供的第三方接口快速完成数据挖掘应用的编程实现。
进行数据挖掘应用研究的科研人员。
许多科研院所为了更好地对科研工作进行管理,纷纷开发了适用自身的科研业务管理系统,并在使用过程中积累了大量的科研信息数据。但是,这些科研业务管理系统一般没有对这些数据进行深入分析,并没有对数据所隐藏的价值充分地挖掘利用。科研人员需要通过数据挖掘建模工具及有关方法论来深挖科研信息的价值,从而提高科研水平。关注高级数据分析的人员。
业务报告和商业智能解决方案对于了解过去和现在的状况可能是非常有用的。但是,数据挖掘的预测分析解决方案还能使这类人员预见未来的发展状况,让他们的机构能够先发制人,而不是处于被动。因为数据挖掘的预测分析解决方案将复杂的统计方法和机器学习技术应用到数据中, 通过使用预测分析技术来揭示隐藏在交易系统或企业资源计划(ERP)、结构数据库与普通文件中的模式和趋势,从而为其决策提供科学依据。
如何阅读本书
本书共16章,分三篇:基础篇、实战篇和提高篇。基础篇介绍了数据挖掘的基本原理;实战篇介绍了各种真实案例,通过对案例深入浅出的剖析,使读者在不知不觉中获得数据挖掘项目的经验,同时快速领悟看似难懂的数据挖掘理论。读者在阅读过程中,应充分利用随书配套的案例建模数据,借助相关的数据挖掘建模工具,通过上机实验,以快速理解相关的知识与理论。
书摘
本节将详细介绍ID3算法,其也是最经典的决策树分类算法。
1.ID3算法简介及基本原理
ID3算法基于信息熵来选择最 佳的测试属性,它选择当前样本集中具有最大信息增益值的属性作为测试属性;样本集的划分则依据测试属性的取值进行,测试属性有多少个不同的取值就将样本集划分为多少个子样本集,同时决策树上相应于该样本集的节点长出新的叶子节点。ID3算法根据信息论的理论,采用划分后样本集的不确定性作为衡量划分好坏的标准,用信息增益值度量不确定性:信息增益值越大,不确定性越小。因此,ID3算法在每个非叶节点选择信息增益最大的属性作为测试属性,这样可以得到当前情况下最纯的拆分,从而得到较小的决策树。
……