Acknowledgments
I Basics
1 Review of basic magnetostatics
1.1 Magnetic field
1.1.1 Magnetic poles
1.1.2 Magnetic flux
1.1.3 Circulating currents
1.1.4 Amp~re's circuital law
1.1.5 Biot-Savart law
1.1.6 Field from a straight wire
1.2 Magnetic moment
1.2.1 Magnetic dipole
1.3 Definitions
Homework
2 Magnetization and magnetic materials
2.1 Magnetic induction and magnetization
2.2 Flux density
2.3 Susceptibility and permeability
2.4 Hysteresis loops
2.5 Definitions
2.6 Units and conversions
Homework
3 Atomic origins of magnetism
3.1 Solution of the Schr6dinger equation for a free atom
3.1.1 What do the quantum numbers represent?
3.2 The normal Zeeman effect
3.3 Electron spin
3.4 Extension to many-electron atoms
3.4.1 Pauli exclusion principle
3.5 Spin-orbit coupling
3.5.1 Russell-Saunders coupling
3.5.2 Hund's rules
3.5.3 jj coupling
3.5.4 The anomalous Zeeman effect
Homework
Diamagnetism
4.1 Observing the diamagnetic effect
4.2 Diamagnetic susceptibility
4.3 Diamagnetic substances
4.4 Uses of diamagnetic materials
4.5 Superconductivity
4.5.1 The Meissner effect
4.5.2 Critical field
4.5.3 Classification of superconductors
4.5.4 Superconducting materials
4.5.5 Applications for superconductors
Homework
Paramagnetism
5.1 Langevin theory of paramagnetism
5.2 The Curie-Weiss law
5.3 Quenching of orbital angular momentum
5.4 Pauli paramagnetism
5.4.1 Energy bands in solids
5.4.2 Free-electron theory of metals
5.4.3 Susceptibility of Pauli paramagnets
5.5 Paramagnetic oxygen
5.6 Uses ofparamagnets
Homework
Interactions in ferromagnetic materials
6.1 Weiss molecular field theory
6.1.1 Spontaneous magnetization
6.1.2 Effect of temperature on magnetization
6.2 Origin of the Weiss molecular field
6.2.1 Quantum mechanics of the He atom
6.3 Collective-electron theory of ferromagnetism
6.3.1 The Slater-Pauling curve
6.4 Summary
Homework
7 Ferromagnetic domains
7.1 Observing domains
7.2 Why domains occur
7.2.1 Magnetostatic energy
7.2.2 Magnetocrystalline energy
7.2.3 Magnetostrictive energy
7.3 Domain walls
7.4 Magnetization and hysteresis
Homework
8 Antiferromagnetism
8.1 Neutron diffraction
8.2 Weiss theory of antiferromagnetism
8.2.1 Susceptibility above Tn
8.2.2 Weiss theory at Ts
8.2.3 Spontaneous magnetization below T~4
8.2.4 Susceptibility below TN
8.3 What causes the negative molecular field?
8.4 Uses of antiferromagnets
Homework
9 Ferrimagnetism
9.1 Weiss theory of ferrimagnetism
9.1.1 Weiss theory above Tc
9.1.2 Weiss theory below T~
9.2 Ferrites
9.2.1 The cubic ferrites
9.2.2 The hexagonal ferrites
9.3 The garnets
9.4 Half-metallic antiferromagnets
Homework
10 Summary of basics
10.1 Review of types of magnetic ordering
10.2 Review of physics determining types of magnetic ordering
II Magnetic phenomena
11 Anisotropy
11.1 Magnetocrystalline anisotropy
11.1.1 Origin of magnetocrystalline anisotropy
11.1.2 Symmetry of magnetocrystalline anisotropy
11.2 Shape anisotropy
11.2.1 Demagnetizing field
11.3 Induced magnetic anisotropy
11.3.1 Magnetic annealing
11.3.2 Roll anisotropy
11.3.3 Explanation for induced magnetic anisotropy
l 1.3.4 Other ways of inducing magnetic anisotropy
Homework
12 Nanoparticles and thin films
12.1 Magnetic properties of small particles
12.1.1 Experimental evidence for single-domain particles
12.1.2 Magnetization mechanism
12.1.3 Superparamagnetism
12.2 Thin-film magnetism
12.2.1 Structure
12.2.2 Interfaces
12.2.3 Anisotropy
12.2.4 How thin is thin?
12.2.5 The limit of two-dimensionality
13 Magnetoresistance
13.1 Magnetoresistance in normal metals
13.2 Magnetoresistance in ferromagnetic metals
13.2.1 Anisotropic magnetoresistance
13.2.2 Magnetoresistance from spontaneous magnetization
13.2.3 Giant magnetoresistance
13.3 Colossal magnetoresistance
13.3.1 Superexchange and double exchange
Homework
14 Exchange bias
14.1 Problems with the simple cartoon mechanism
14.1.1 Ongoing research on exchange bias
14.2 Exchange anisotropy in technology
III Device applications and novel materials
15 Magnetic data storage
15.1 Introduction
15.2 Magnetic media
15.2.1 Materials used in magnetic media
15.2.2 The other components of magnetic hard disks
15.3 Write heads
15.4 Read heads
15.5 Future of magnetic data storage
16 Magneto-optics and magneto-optic recording
16.1 Magneto-optics basics
16.1.1 Kerr effect
16.1.2 Faraday effect
16.1.3 Physical origin of magneto-optic effects
16.2 Magneto-optic recording
16.2.1 Other types of optical storage, and the future of magneto-optic recording
17 Magnetic semiconductors and insulators
17.1 Exchange interactions in magnetic semiconductors and insulators
17.1.1 Direct exchange and superexchange
17.1.2 Carrier-mediated exchange
17.1.3 Bound magnetic polarons
17.2 II-VI diluted magnetic semiconductors - (Zn,Mn)Se
17.2.1 Enhanced Zeeman splitting
17.2.2 Persistent spin coherence
17.2.3 Spin-polarized transport
17.2.4 Other architectures
17.3 III-V diluted magnetic semiconductors - (Ga,Mn)As
17.3.1 Rare-earth-group-V compounds - ErAs
17.4 Oxide-based diluted magnetic semiconductors
17.5 Ferromagnetic insulators
17.5.1 Crystal-field and Jahn-Teller effects
17.5.2 YTiO3 and SeCuO3
17.5.3 BiMnO3
17.5.4 Europium oxide
17.5.5 Double perovskites
17.6 Summary
18 Multiferroics
18.1 Comparison of ferromagnetism and other types of ferroic ordering
18.1.1 Ferroelectrics
18.1.2 Ferroelastics
18.1.3 Ferrotoroidics
18.2 Multiferroics that combine magnetism and ferroelectricity
18.2.1 The contra-indication between magnetism and ferroelectricity
18.2.2 Routes to combining magnetism and ferroelectricity
18.2.3 The magnetoelectric effect
18.3 Summary
Epilogue
Solutions to selected exercises
References
Index