编辑推荐
适读人群 :文科背景的管理类专业本科生,理工科背景的管理类和工程类专业专科生,要求相对全面地掌握运筹学知识的经济管理类研究生、MBA、MPA和工程硕士
《中国科学院规划教材:运筹学2类(第2版)》为初级运筹学教材,《中国科学院规划教材:运筹学2类(第2版)》从实际研究需要出发介绍了随机模拟理论,比较全面地给出了初级运筹学的基本理论与方法。 《中国科学院规划教材:运筹学2类(第2版)》首先在“引言”中对运筹学的基本研究思路和实际应用予以了简要说明;其次,将现今应用最为成功的线性规划作为首先讨论的内容,在动态规划中初步介绍了常见的处理技巧,在图与网络中,介绍了各个问题的常用算法等,在决策分析中除讨论了经典性的内容,也详细地讨论了多目标决策和多属性决策,另外,《中国科学院规划教材:运筹学2类(第2版)》不但对对策论、排队论与可靠论的经典性内容进行了完整的和系统性的讨论,而且对在现有运筹学教学体系中尚未得到重视的,但是作为解决实际运筹学问题所需的数据处理的预测方法也给予了完整的和系统性的介绍。 全书共12章,分别为线性规划、整数规划、非线性规划、动态规划、图与网络、决策分析、对策论、库存论、排队论、可靠论、预测、及模拟。
内容简介
书籍 数学书籍
本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、整数规划、非线性规划、动态规划、图与网络、决策分析、对策论、库存论、可靠论、预测以及模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目”基于信息平台的运筹学立体化教材”的成果,配备有完整的教学支持系统,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
本书作为教材,适合于文科背景的管理类专业本科生,理工科背景的管理类和工程类专业专科生,以及要求相对全面地掌握运筹学知识的经济管理类研究生、MBA、MPA、和工程硕士使用。
作译者
徐玖平,清华大学应用数学博士、四川大学物理化学博士,国际系统与控制科学院终身院士。四川大学教授、博士生导师。国家杰出青年科学基金获得者,中国青年科技奖获得者,长江学者特聘教授,新世纪百千万人才工程国家级人选。国际管理科学与工程管理联合会主席,《International Journal of Management Science and Engineering Management》主编;中国系统工程学会副理事长,《系统工程理论与实践》副主编。现任四川大学低碳技术与经济工程研究中心常务副主任,四川大学文科综合实验教学国家级示范中心主任,四川大学管理科学与工程博士后流动站站长,四川大学工商管理学院教授委员会主席兼副院长。
目录
序
前言
常用符号
引言
第1章 线性规划
1.1 基本问题
1.1.1 基本模型
1.1.2 基本概念
1.2 几何思路
1.2.1 图解法
1.2.2 几何意义
1.3 单纯形法
1.3.1 几何语言
1.3.2 代数形式
1.4 对偶理论
1.4.1 对偶问题
1.4.2 经济解释
1.4.3 敏感分析
1.5 软件求解
1.5.1 Lindo
1.5.2 Lingo
1.6 模型讨论
1.6.1 单一模型
1.6.2 组合模型
思考题
第2章 整数规划
2.1 数学模型
2.1.1 变量设置
2.1.2 特殊约束
2.1.3 建模举例
2.2 模型求解
2.2.1 MIP问题
2.2.2 BIP问题
2.2.3 软件求解
思考题
第3章 非线性规划
3.1 数学模型
3.2 模型求解
3.2.1 图解法
3.2.2 软件求解
3.3 特殊规划
3.3.1 分式规划
3.3.2 可分规划
3.3.3 二次规划
思考题
第4章 动态规划
4.1 概念描述
4.2 基本思想
4.3 基本方程
4.4 软件求解
思考题
第5章 图与网络
5.1 基本概念
5.2 网络计划
5.2.1 确定型网络图
5.2.2 概率型网络图
5.2.3 网络图的优化
5.3 树图结构
5.4 最小费用流
5.4.1 数学模型
5.4.2 软件求解
5.5 最大流问题
5.5.1 基本性质
5.5.2 软件求解
5.6 最短路问题
5.6.1 数学模型
5.6.2 布点问题
5.7 运输问题
5.8 分配问题
5.8.1 最大匹配
5.8.2 最优匹配
5.8.3 一般分配
5.9* 木旅行推销商问题
5.10* 辛国邮递员问题
5.10.1 赋权无向图情形
5.10.2 赋权有向图情形
5.11* 一般化模型
思考题
第6章 决策分析
6.1 基本问题
6.2 格不确定决策
6.3 风险型决策
6.3.1 先验决策
6.3.2 信息价值
6.3.3 后验决策
6.4 效用函数
6.5 事列决策
6.6 多目标决策
6.6.1 基本概念
6.6.2 权重系数
6.6.3 目标规划
6.7 多属性决策
6.7.1 基本概念
6.7.2 规范处理
6.7.3 决策方法
6.8* Markov决策
6.8.1 转移矩阵
6.8.2 决策方法
6.9* 群决策
6.9.1 NGT法
6.9.2 Delphi法
思考题
第7章 对策论
7.1 二人对策
7.1.1 基本问题
7.1.2 鞍点对策
7.1.3 优势原则
7.1.4 混合策略
7.1.5 求解方法
7.2* 多人对策
7.2.1 合作对策
7.2.2 非合作对策
思考题
第8章 库存论
8.1 问题描述
8.2 基本模型
8.3 缺货模型
8.4 供货有限模型
8.5* 批量折扣模型
8.6* 木约束条件模型
8.7* 木动态需求模型
思考题
第9章 排队论
9.1 基本概念
9.1.1 模型描述
9.1.2 符号表示
9.1.3 数量指标
9.2 分布函数
9.2.1 Poisson过程
9.2.2 负指数分布
9.2.3 Erlang分布
9.3 生灭系统
9.3.1 生灭过程
9.3.2 M/M/s/∞模型
9.3.3 M/M/s/K模型
9.3.4* 有限源模型
9.3.5* 依赖状态模型
9.4* 特殊系统
9.5 优化设计
9.5.1 M/M/1模型
9.5.2 M/M/s模型
9.6* 排队模拟
思考题
第10章 可靠论
10.1 基本概念
10.1.1 寿命分布
10.1.2 可靠性指标
10.2 不可修系统
10.2.1 串联系统
10.2.2 并联系统
10.2.3 混联系统
10.2.4 表决系统
10.3 可靠性最优化
思考题
第11章 预测
11.1 预测概述
11.1.1 应用范围
11.1.2 程序步骤
11.2 抽样调查法
11.2.1 问卷设计
11.2.2 抽样调查
11.2.3 统计分析
11.2.4 推理预测
11.3 时间序列法
11.3.1 时间序列
11.3.2 方法介绍
11.3.3 软件求解
11.4 因果分析法
11.5 判断预测法
11.6 实际应用
11.6.1 方法选择
11.6.2 预测误差
思考题
第12章 模拟
12.1 模拟概述
12.1.1 模拟步骤
12.1.2 应用举例
12.2 模拟方法
12.2.1 随机数生成方法
12.2.2 随机数生成实例
12.2.3 随机事件的模拟
12.3 数据处理
12.4 软件求解
思考题
附录A1 软件简介
A.1 Lindo
A.1.1 使用界面
A.1.2 注意事项
A.2 Lingo
A.2.1 集的概念
A.2.2 数据部分
A.2.3 初始部分
A.2.4 计算部分
A.2.5 基本函数
A.2.6 编程功能
A.2.7 脚本文件
附录B 案例分析
B.1 应用发展
B.2 案例选讲
B.2.1 问题描述
B.2.2 软件描述
B.2.3 对策建议
B.3 案例练习
参考文献
索引
书摘
第1章线性规划
数学规划是运筹学的一个重要分支,其基本思想出现在19世纪初。第二次世界大战后,由于生产发展的需要和电子计算机的应用,出现了许多数学规划方法,如线性规划、非线性规划、整数规划与动态规划等。数学规划的基本内容包括各种不同类型规划存在最优解的充要条件、对偶定理和有效算法等。数学规划中最简单的一种问题就是线性规划,是数学规划最基本最重要的分支,这里仅介绍线性规划的一些基本内容,主要关注于有效算法的软件实现,参见文献。
1.1 基本问题
本节先介绍线性规划模型的基本形式,然后给出规划问题的一些基本概念
1.1.1 基本模型
例1.1(产品组合问题) 某公司现有三条生产线来生产两种新产品,其主要数据如表1.1所示(时间单位为小时,利润单位为千元),请问如何生产可以使公司每周利润最大?
显然,此问题是在生产线可利用时间受到限制的情形下来寻求每周利润最大化,其决策方案是决定每周产品一和产品二各自的产量为多少才最佳?
1)变量的确定
变量X=(X1,X2,…,XN)T是运筹学问题或系统中待确定的某些量,在实际问题中常常把变量2叫决策变量。在例1.1中,就可以记X1为每周生产产品二的产量;X2为每周生产产品二的产量。
2)约束条件
求目标函数极值时的某些限制称为约束条件。在例1.1中,每周的产品生产要受到三条生产线的可用生产时间的约束,全为“≤”的不等式约束。
3)目标函数
在例1.1中,生产计划安排的“最优化”要有一定的标准或评价方法,目标函数就是这种标准的数学描述,这里的目标是要求每周的生产利润(可记为Z,以千元为计量单位1为最大。
根据以上讨论,例1.1的产品组合问题可抽象地归结为一个数学模型:
……