编辑推荐
本书是对传统的数学教学内容削枝强干、精选整合而成的,其特点是淡化数学理论,强化实际能力的培养,突出数学在电学中的应用,并做到了循序渐进、由浅人深、条理清晰、语言简练、易教易学。
内容简介
本书是高职电工电子系列教材之一,内容包括数学基础知识及其应用、极限与连续、微分学及其应用、积分学及其应用、微分方程、无穷级数、傅里叶级数和拉普拉斯变换。本书每章均附有习题,书末附有答案。带“*”号的内容为选学。本书是对传统的数学教学内容削枝强干、精选整合而成的,其特点是淡化数学理论,强化实际能力的培养,突出数学在电学中的应用,并做到了循序渐进、由浅人深、条理清晰、语言简练、易教易学。
本书可作为高职院校电类专业及相关专业的数学教学用书,同时也可作为成人高校学生及自学者的辅导用书。
目录
第1章 数学基础知识及其应用
1.1 幂函数、指数函数与对数函数
1.1.1 幂函数
1.1.2 指数函数
1.1.3 对数函数
1.2 指数函数、对数函数在电学中的应用举例,
1.3 三角函数与反三角函数
1.3.1 三角函数
1.3.2 反三角函数
1.4 三角函数在电学中的应用举例
1.4.1 简单应用
1.4.2 正弦交流电
1.4.3 正弦交流电的和
1.4.4 电路的瞬时功率
习题1-4
第2章 向量与复数及其应用
2.1 向量
2.1.1 向量的概念
2.1.2 向量运算
2.1.3 向量的坐标表示
2.1.4 向量的坐标运算
习题2-1
2.2 向量在电学中的应用
2.2.1 旋转向量
2.2.2 同方向同频率的正弦波的叠加
习题2-2
2.3 复数
2.3.1 复数的概念
习题2-3-1
2.3.2 复数的几何表示
习题2-3-2
2.3.3 复数的三角形式
习题2-3-3
2.3.4 复数的指数形式
习题2-3-4
2.4 复数在电学中的应用
2.4.1 用复数表示正弦交流电
*2.4.2 用复数计算阻抗、电流与电压
第3章 极限与连续
3.1 函数
3.1.1 函数的概念
3.1.2 建立函数关系举例
3.1.3 反函数
3.1.4 初等函数
3.1.5 函数的基本性态
习题3-1
3.2 极限的概念
3.2.1 数列的极限
习题3-2-1
3.2.2 函数的极限
3.2.3 级限的运算
习题3-2-3
3.3 无穷小与无穷大
3.3.1 无穷小
3.3.2 无穷大
习题3-3
3.4 两个重要极限
习题3-4
3.5 连续函数的概念
3.5.1 函数的连续与间断
3.5.2 函数间断点的类型及其对应的图形
3.5.3 初等函数的连续性
3.5. 4 闭区间上连续函数的性质
习题3-5
第4章 微分学及其应用
4.1 导数的概念
4.1.1 问题的提出
4.1.2 导数的几何意义
4.1.3 求导数的一般步骤
习题4-1
4.2 导数的运算法则
4.2.1 求导运算法则
4.2.2 复合函数的求导法则
习题4-2
4.3 微分
4.3.1 微分的概念
4.3.2 微分的运算法则
4.3.3 微分在近似计算中的应用
习题4-3
4.4 导数的应用
4.4.1 函数的单调性与曲线的凹凸性
4.4.2 函数的极值与最值
习题4-4
4.4.3 导数在电学中的应用举例
第5章 积分学及其应用
5.1 不定积分
5.1.1 原函数与不定积分的概念
习题5-1-1
5.1.2 基本积分公式和性质 直接积分法
习题5-1-2
5.1.3 换元积分法
习题5-1-3
5.1.4 分部积分法
习题5-1-4
5.1.5 积分表的使用
习题5-1-5
5.2 定积分
5.2.1 定积分的概念
习题5-2-1
5.2.2 定积分的换元积分法和分部积分法
习题5-2-2
*5.2.3 定积分的近似计算
习题5-2-3
5.2.4 广义积分
习题5-2-4
5.3 定积分的应用
5.3.1 定积分的几何应用
习题5-3-1
5.3.2 定积分的物理应用
习题5-3-2
5.3.3 定积分在电学中的应用举例
习题5-3-3
第6章 微分方程
6.1 微分方程的基本概念
习题6-1
6.2 一阶微分方程
6.2.1 可分离变量的微分方程
习题6-2-1
6.2.2 一阶线性微分方程
习题6-2-2
6.3 二阶线性微分方程
6.3.1 二阶线性微分方程解的结构
6.3.2 二阶常系数线性微分方程的解法
习题6-3
6.4 微分方程在电学中的应用举例
习题6-4
第7章 无穷级数
7.1 数项级数
7.1.1 常数项级数的基本概念
7.1.2 级数的性质
习题7-1
7.2 数项级数的审敛法
7.2.1 正项级数及其审敛法
7.2.2 交错级数及其审敛法
7.2.3 绝对收敛与条件收敛
习题7-2
7.3 幂级数
7.3.1 函数项级数的概念
7.3.2 幂级数及其收敛性
7.3.3 幂级数的运算与和函数
习题7-3
7.4 函数的幂级数展开
7.4.1 泰勒级数
7.4.2 函数展开成幂级数
习题7-4
第8章 傅里叶级数
8.1 傅里叶级数
8.1.1 三角级数、三角函数系的正交性
8.1.2 以2π为周期的函数的傅里叶级数
8.1.3 奇函数和偶函数的傅里叶级数
8.1.4 以T为周期的函数的傅里叶级数
习题8-1
8.2 周期函数的频谱
8.2.1 傅里叶级数的复数形式
8.2.2 周期函数的频谱
习题8-2
*第9章 拉普拉斯变换
9.1 拉氏变换的基本概念
9.1.1 拉氏变换的概念
9.1.2 单位脉冲函数及其拉氏变换
习题9-1
9.2 拉氏变换的性质
习题9-2
9.3 拉氏逆变换的求法
习题9-3
9.4 拉氏变换的应用举例
习题9-4
习题答案
附录A 基本初等函数的图像与特性
附录B 中学数学常用公式
附录C 常用积分公式
参考文献
前言
高等职业教育是现代高等教育的重要组成部分,近几年来取得了突飞猛进的发展。为了更好地适应各企事业单位的用人需要,教育部相继颁布了《高职高专教育基础课程教学基本要求》和《高职高专教育专业人才培养目标及规格》两份文件。依照文件精神,编者结合多年高职教学的实践经验和当前高职院校学生的状况,为电类专业“量身定做”了本教材。目前,本教材已被列入“世纪英才NEW IDEA INSIDE”教材建设千程(详情请访问WWW.ycbook.com.cn)。
21世纪的社会是信息的社会,信息的转换、传输和处理离不开电路,而数学无论在电路理论研究还是在实践应用上,都是必不可少的工具。因此,编写适用于高职电类各专业具有实用性的数学教材已迫在眉睫。《电路数学》的问世,将缓解学时少和实用性教材匮乏的矛盾,本书也是如何进行高职数学教材改革与创新的有益探索与尝试。
本教材在“能力为本位”的总体思想的指导下,定位在“以应用为目的,以必需、够用为度”的平台上,编排新颖、结构合理,本着“降低理论、加强基础、突㈩应用、确保专业需要”的实用性原则,突破了重理论轻实践、重知识轻技能的“学科本位”模式。并在基本维持系统性与连贯性的原则下,对《高等数学》的内容作了适当的调整,增加了与电学有关的引例与例题,以更好地体现《电路数学》的特色。本教材强调“基本”二字,定理主要掌握结论,计算着重于方法、规律的介绍,叙述简练、清晰准确、循序渐进、由浅人深,力图使学生获得职业技术所需的最基本、最实用的数学知识,以利于培养学生专业实践的适应能力和应变能力,为培养高层次、复合型、实用型高质量人才打下坚实的基础。
本书由武汉铁路职业技术学院的罗成林老师主编,由武汉铁路职业技术学院杨承毅老师和武汉船舶职业技术学院的朱春浩老师担任主审。本书在编写过程中参考并吸收了有关教材及著作的成果,在此对这些图书的作者表示诚挚的谢意!
由于编者水平有限,书中难免有疏漏之处,恳请广大读者批评指正。
编 者