基本信息
- 原书名:Keras Deep Learning Cookbook

内容简介
目录
审校者简介
前言
第1章 Keras安装 1
1.1 引言 1
1.2 在Ubuntu 16.04上安装Keras 1
1.2.1 准备工作 2
1.2.2 怎么做 2
1.3 在Docker镜像中使用Jupyter Notebook安装Keras 7
1.3.1 准备工作 7
1.3.2 怎么做 7
1.4 在已激活GPU的Ubuntu 16.04上安装Keras 9
1.4.1 准备工作 9
1.4.2 怎么做 10
第2章 Keras数据集和模型 13
2.1 引言 13
2.2 CIFAR-10数据集 13
2.3 CIFAR-100数据集 15
2.4 MNIST数据集 17
2.5 从CSV文件加载数据 18
译者序
本书从实用的角度出发,全方面介绍了如何使用Keras解决深度学习中的各类问题。本书假设读者无任何关于深度学习编程的基础知识,首先介绍了Keras这一高度模块化、极简式的深度学习框架的安装、配置和编译等平台搭建知识,而后详细介绍了深度学习所要求的数据预处理等基本内容,在此基础上介绍了卷积神经网络、生成式对抗网络、递归神经网络这三种深度学习方法并给出了相关实例代码,最后本书介绍了自然语言处理、强化学习两方面的内容。
本书是一本实践性很强的深度学习工具书,既适合希望快速学习和使用Keras深度学习框架的工程师、学者和从业者,又特别适合立志从事深度学习和AI相关的行业并且希望用Keras开发实际项目的工程技术人员。
本书翻译工作得到国家自然科学基金项目(项目编号:61403140)的资助,在此表示衷心感谢。
感谢华章公司的刘锋编辑不辞辛苦地与译者沟通相关细节内容,同时感谢他在翻译本书过程中给予的诸多帮助。
限于本人水平,难免会对本书中部分内容的理解或中文语言表达存在不当之处,敬请读者批评指正,以便能够不断改进。
罗娜祁佳康
2019年于上海
前言
本书讲述了如何在Keras库的帮助下,高效地解决在训练深度学习模型时遇到的各种问题。内容包括如何安装和设置Keras,如何在TensorFlow、Apache MXNet和CNTK后端开发中使用Keras实现深度学习。
从加载数据到拟合和评估模型获得最佳性能,你将逐步解决在深度学习建模时可能遇到的所有问题。在本书的帮助下,你将实现卷积神经网络、递归神经网络、对抗网络等。除此之外,你还将学习如何训练这些模型以实现真实的图像处理和语言处理任务。
本书的最后,你将完成一个实例以进一步了解如何利用Python和Keras的强大功能实现有效的深度学习。
本书读者对象
本书适合数据科学家或机器学习专家,可以帮助他们解决在训练深度学习模型时遇到的常见问题。阅读本书前,需要对Python有基本的了解,并了解机器学习和神经网络的内容。
本书涵盖的内容
第1章介绍了Keras的安装和设置过程以及如何配置Keras。
第2章介绍了使用CIFAR-10、CIFAR-100或MNIST等数据集,以及用于图像分类的其他数据集和模型。
第3章介绍了使用Keras的各种预处理和优化技术,优化技术包括TFOptimizer、AdaDelta等。
第4章详细描述了不同的Keras层,包括递归层和卷积层等。
第5章通过宫颈癌分类和数字识别数据集的实例,详细解释如何使用卷积神经网络算法。
第6章包括基本的生成式对抗网络(GAN)和边界搜索GAN。
第7章涵盖了递归神经网络的基础,以便实现基于历史数据集的Keras。
第8 章包括使用Keras进行单词分析和情感分析的NLP基础知识。
第9章展示了如何在Amazon评论数据集中使用Keras模型进行文本概述。
第10章侧重于使用Keras设计和开发强化学习模型。
阅读本书须知
读者应该掌握Keras和深度学习的基本知识。
排版约定
媒体评论
本书介绍了如何在时下流行的Keras库的帮助下,解决训练深度学习模型时遇到的各种问题。从安装和设置Keras开始,展示了如何使用Keras进行深度学习;从加载数据到拟合、评估模型获得最佳性能,逐步解决工作过程中遇到的每一个问题。在本书的帮助下,你可以分别实现卷积神经网络、递归神经网络、生成式对抗网络等。除此之外,本书还讲述了如何训练这些模型以完成图像处理和语言处理的任务。
本书最后还给出了一些实例,可以帮助你直观地了解Python和Keras在深度学习上的强大功能。
通过阅读本书,你将学到:
· 在TensorFlow中安装和配置Keras
· 使用Keras库进行神经网络编程
· 了解不同的Keras层
· 使用Keras实现简单的前馈神经网络、卷积神经网络和递归神经网络
· 使用各种数据集和模型进行图像和文本分类
· 使用Keras开发文本摘要和强化学习模型