基本信息
- 原书名:Mind+Machine: A Decision Model for Optimizing and Implementing Analytics

编辑推荐
Evalueserve(易唯思)公司联合创始人马克·沃伦威尔德的鼎力之作
企业采购、研发、销售、营销、供应链等业务的中高层管理者/B2B、B2C行业管理者/数据分析师/提升决策能力之“锦囊”
机器智能协助人类进行推理计算/人类智慧帮助机器弥补数据缺陷
人类智慧+机器智能=人机共生
增强数据分析效果/改善决策能力/帮助企业增收/提高客户满意度......
内容简介
作译者
他曾在瑞士苏黎世联邦理工学院学习电信工程,并于1991年在法国INSEAD大学获得工商管理硕士学位。在1998年他是麦肯锡合伙人,并前往快速增长的印度市场而成为一名地理企业家。在那里,他遇到了Evalueserve公司的联合创始人,决定成立一家合资企业。Evalueserve公司成立16年以来,在数据、信息、洞察力和知识的战略重要性日益增长的推动下迅速扩张,现在拥有3500多名员工,服务于全球的金融、专业服务公司和中小企业。
Marc对创新的迷恋让他在Evalueserve公司建立了一系列内部企业。 他是InsightBee数字模型的负责人,也就是Evalueserve公司新的现收现付研究和分析解决方案的负责人。
Marc认为自己是一个“自我意识的书呆子”,他很清楚技术人员与终端用户及决策者之间的沟通挑战。使用人机共生模式,他正试图通过揭示和简化数据分析的世界来弥合这种沟通差距。
Marc和他的妻子Gabi共有4个孩子,那是一个非常和睦的家庭。家人是他生活中的真正灵感。Gabi从事心理治疗实践,并启发了这本书关于心理学分析的部分,这是一个无人写过的话题。他们曾经在瑞士、奥地利、印度、新加坡、美国和英国生活过,全家人对其他文化有着深刻的理解。他们还分享了对山脉、不常参加的高尔夫球赛的热爱。
有关Evalueserve公司和人机共生方法的更多信息,请访问Evalueserve公司的博客(evalueserve.com/blog),Marc是非常活跃的贡献者。
你也可以在LinkedIn上找到Marc,或者在Twitter上关注他,或者直接通过电子邮件与他联系。
LinkedIn: linkedin.com/in/marcvollenweider
Twitter: @vollenweide
Email: marc@evalueserve.com
目录
前言
致谢
作者简介
第一部分 人机共生的12个谬误之最
谬误1 大数据无所不能 3
谬误2 数据越多,洞察力越丰富 16
谬误3 首先,我们需要一个数据湖和许多工具 25
谬误4 数据分析仅仅是分析的一个挑战:第1部分——最后一英里 30
谬误5 数据分析仅仅是分析的一个挑战:第2部分——组织结构 34
谬误6 重组不会对分析产生不利影响 38
谬误7 知识管理很简单 43
谬误8 智能机器能够解决任何分析问题 47
谬误9 一切都必须在内部完成 59
谬误10 我们需要更多、更广泛以及更华丽的报表 64
谬误11 分析投资意味着巨大的投资回报率 70
谬误12 分析是一个理性的过程 76
结论 81
第二部分 为人机共生创造重大机会的13个趋势
趋势1 云与移动技术的小行星撞击 85
译者序
数据分析是机器智能的基础。就目前的数据收集、加工水平来看,数据分析并不是万能的。业务数据还存在着质量问题,机器学习的算法对含噪声数据的处理效果并不理想。另外,尽管数据量增加迅速,但与业务领域有关的全量数据收集还比较困难,数据孤岛还广泛存在。在企业界,最近几年颇有影响的深度学习算法在图像识别、语音处理、语义理解等领域取得了引人注目的成绩,机器智能在某些领域的表现超过人类,为人类的思维提供了有价值的信息和知识,辅助人类更好地解决问题。但必须看到,机器智能基本还限制在模拟人的智能的层次,应用范围还有一定的局限。人类对自身大脑的结构和思维机理认识还在探索中。在这种情况下,人的思维或心智,尤其是在常识推理、创新性设计、基于情感的价值判断等领域,机器智能还望尘莫及。而机器在统计推理、大规模计算等方面远超过人类,可以帮助人们发现一些有用的信息和模式。人的心智和机器智能结合(后文称为人机共生)将会大大提升业务决策的质量。因此,如何结合机器智能与人的思维能力来改善企业各层人员的决策能力就成为一个重要的问题。
本书分为三个部分,分别阐述在结合人的心智和机器智能过程中如何避免数据分析的错误认识、实现人机共生的机会以及主要方法。
首先针对人机共生(mind+machine)的问题,总结了在业界流行的一些常见偏见,它们会阻碍人们充分利用数据分析。这些对数据分析的谬误性认识,存在于很多企业中。这些认识包括对大数据分析的过度崇拜、数据量的大小对分析结果的影响、数据治理、数据分析团队、组织重组对数据分析的影响、知识管理对分析用例投资回报率的影响、机器智能的能力高估、数据分析项目的风险等方面。对于成功的数据分析项目,如何避免这些问题、培养正确的数据思维和数据价值观,作者都给出了详细的讨论。
机器智能和人的心智各有所长,互为补充,因此人机共生是未来数据分析的最好方式,这在很多行业的应用中都得到了证明。第二部分讨论了为人机共生带来有利机会的13个趋势,从云计算与移动应用、物联网的应用、知识环的监管、多客户端应用、数据隐私保护、共享经济、知识管理、工作流与自动化、人机交互、外包合作等方面讨论了促进人机共生的手段。对于需要开展数据分析的企业而言,这些手段对充分利用上述这些前所未有的机会,提升数据分析项目的成功率,实现数据的变现价值,都具有重要的参考价值。
针对上述问题,第三部分采用用例的方法,列举了实现人机共生的15种典型的方法,涉及人机共生的分析用例方法、知识环的规划、基于问题树的数据选择、工作流的正确使用、终端用户的服务、用户体验的指导原则、成功的知识管理规则、心智的相容、知识产权与知识对象、用例组合的治理、用例的交易与共享等方法,这些方法为企业如何利用机器智能、提升人的决策能力,给出了比较实用的启发。
本书不是一本关于数据分析的技术书籍,没有复杂枯燥的算法、工具和系统介绍,但对于企业管理人员深入认识数据分析在企业决策中的作用、避免一些导致数据分析项目失效的错误认识、提升业务决策中利用机器智能的效果,提供了数据思维以及方法论的指导。本书是作者多年实践的领悟以及经验总结,比较适合关注、领导数据分析项目的管理人员,或者对数据分析有兴趣的人士阅读参考。
本书翻译过程中王景韬、齐梓熙、赵洪博、朱荣斌、于召鑫、黄黎明、胡远文等同学帮助校对了部分书稿,在此表示感谢。由于译者水平有限,原书语言也有一定难度,难免存在不妥之处,请读者不吝指出。
赵卫东
2017年10月
复旦大学
前言
2015年,在研究和分析领域工作15年之后,我们决定创立采用人机共生概念的Evalueserve公司。我相信,人类大脑的感知力与自动化的结合是至关重要的,因为无论是人的心智还是机器,在未来都没有独立处理复杂的分析任务的能力。
John Wiley & Sons的编辑小组在2015年11月与我联系,询问我是否愿意写一本关于人机共生方法如何帮助管理信息密集流程的书籍——这是一个全世界公司都越来越感兴趣的话题。我从客户、朋友和同事那里获得了非常积极的反馈意见,并决定开始实施。
本书面向销售、营销、采购、研发、供应链等主流业务的中高层管理人员,尤其是B2B和B2C行业的管理人员,即读者对象是数据分析的潜在受益者和终端用户,以及可能需要在现在或将来根据分析结果做出决策的人。这本书并不是针对数据科学家的技术文档——尽管如此,我坚信,即使是那些专家也可以从分析中理解获得投资回报的主要问题。
本书不会研究特别高级且罕见的分析用例,针对这些用例已经有专门的教科书。相反,本书正在寻找有效的方式,为管理和改善决策以及获得积极的投资回报提供实际的帮助。
阅读本书后,你应该已经了解分析领域人机共生价值链的关键问题,并能够向数据科学家、IT专家和供应商询问正确的问题。在你为一个新提案花费数百万美元之前,应该了解可用的选择和方法。你将会学到一些有用的东西来揭示分析世界。
本书还提出了一种新颖的方法,即用例方法(Use Case Methodology ,UCM),以提供一套有形和经过测试的工具,使你的生活更轻松。
本书采用39个详细的用例和大量的生活实例说明人机共生的应用。相信你会从中发现自己的一些经验。你会发现,你绝非世上唯一在试图理解和学习数据分析的人。
正是以下这两段对话,让我想用这些点子来解决世界各地的分析问题。
一家B2B公司的高级生产经理对我说的第一句话就是:
“Marc,这次会议是关于大数据的吗?如果是的话,我这就走。供应商说我必须安装一个数据湖,并且雇佣大量稀缺且昂贵的统计学家和数据科学家。董事会说我必须在大数据方面做一些事情。但这实在是价格高且复杂,毫无道理。我只是想确保一线人员能及时获得他们需要的东西。我不断听到其他公司的反馈,在数据分析项目初步开展以后,他们不能适应这些分析项目,业务人员一直在抱怨工作进度慢,首席财务官也在询问许多关于大数据方面财务支出的问题。”
在一场与某家资产管理公司的首席运营官(COO)确定项目范围的会议期间,这位COO说:
“我们每年都为养老基金和其他机构投资者做数千个推销活动。我们拥有超过25种不同的数据来源,具有定量数据和定性信息以及许多区域性数据。但是,我们仍然在手动聚集所拥有的资产,并通过电子邮件完成法律部门的签发程序。一定有比这更聪明的办法。”
为什么数据分析的争议颇多,挑战很大?为什么管理者会因为过于夸张且陌生的新举措和流程而感到厌烦,以及因为没有更好的方式来完成工作而感到沮丧(尽管所有的变化都涉及更好、更大和更机智的分析)呢?
典型的直线经理希望以正确的格式在合适的时间为合适的人提供正确的决策支持。个人和公司全力以赴地吸收信息的能力并没有跟上分析用例和可用数据的迅速增长。此外,现有的和新的合规性要求正在以惊人的速度累积,特别是在重点监管行业,例如金融服务和医疗保健。
分析本身并不是真正的问题。在大多数情况下,组织内部的业务运筹才是问题:对工作流进行定义并有效地执行,即对内部调整、IT项目的操作复杂性以及其他阻碍进展的组织性障碍的决策。这些复杂情况会拖慢进程,或者使项目脱离最初的目标,从而导致分析的实际受益人(例如大客户经理,或者实地采购经理)不能及时得到所需。
许多其他问题困扰着分析界:“数据湖”和“神经网络”这些非直观术语的扩散、数据分析心理的时常忽视,由此促使公司过度执着于数据力量,并且将实际操作过于复杂化,以及过度的市场炒作导致技术无法实现承诺。
基于与数百个Evalueserve公司的客户以及前同事在战略咨询领域的交流,一般管理人员对于简化框架的需求越来越迫切,使得信息密集型的决策支持过程更加经济且有效。简单流程总是优于复杂和不透明的流程——分析领域也不例外。
我想揭示分析的真谛。据观察,大数据和人工智能等术语在媒体中正受到高度关注,以至于最为基本的日常分析主题被忽视,例如,问题定义、数据收集、数据清理、数据分析、可视化、传播以及知识管理等主题,我将从这个观察出发进行论述。将大数据应用于每个分析问题就像采用一种高度精确的厨具,例如一种精细平衡的寿司刀,并尝试将其应用于每一项任务。虽然在好几个领域出现了非常有用的大数据用例,但是它们在数十亿的分析用例中仅占5%。
其他95%的用例是什么?小数据。有这么多分析用例需要小数据来产生很大影响,这实在是不可思议。在所有表明这一问题的用例中,我最喜欢的一个用例是,仅依靠800位数据信息就为一家投资银行每年节省了一百万美元的重复投资。第一部分将详细讨论这个用例。
媒体评论
——StefanArn
UBS财富管理全球技术主管、UBS瑞士全球技术主管、战略监管计划集团IT主管
“在这个信息和技术过载的世界,人机共生为在寻找可执行的商业洞察力的商业领袖提供了一个非常必要的解决方案。马克·沃伦威尔德作为世界顶*银行、企业和专业服务公司的顾问以及两家行业创新型企业的创始人,得出了一个如何将人类专业知识与技术相结合来提供高投资回报率的独特观点。他简化了复杂的课题,而且他的方法被超过40个易理解的并且能提供丰富洞察力的用例学习所支持。对于在市场上寻求可持续竞争优势的商业领袖来说是难以抗拒,并且很好理解的。”
——MarkBidwell
InnovationEcosystem创始人、BC平台主席、Terramera主管
“这是一本非常有趣的读物。它通过使用案例、*佳实践和行业洞察力中的大量现实世界用例来阐明数据分析。它还提供了根据投资回报率和‘那又怎样’检验分析价值的使人耳目一新的业务角度。虽然它针对的人群是高层管理人员和决策者,但我认为对于技术人员、研究人员和数据分析人员来说,这也是一本很好的读物。我会将它作为对大数据和社交媒体进行分析研究的部分参考。”
——Tat-SengChua教授
新加坡国立大学计算机学院KITHCT讲席教授