基本信息
- 原书名:Learning OpenCV 3 Computer Vision with Python,Second Edition

编辑推荐
《OpenCV 3计算机视觉:Python语言实现(原书第2版)》由机械工业出版社出版。《OpenCV 3计算机视觉:Python语言实现(原书第2版)》从图像处理的基本操作出发,带你开启先进计算机视觉的探索之旅。计算机视觉是一个快速发展的学科,与其相关的现实应用也呈爆炸性增长,《OpenCV 3计算机视觉:Python语言实现(原书第2版)》的目的就是帮助计算机视觉领域的新手和想要了解全新的OpenCV3.0.0的计算机视觉专家快速掌握基于Python的OpenCV计算机视觉开发的实用方法、技巧和实践。
内容简介
作译者
他出生在意大利瓦雷泽市的Lombardy,并在那里长大,在米兰Universitá Statale受过哲学教育,最近11年Joe在爱尔兰的Cork度过,在这里他成为Cork技术研究所的一名计算机科学研究生。
我非常感谢我的合作伙伴Rowena,她总是鼓励我,也感谢两个小女儿给我灵感。非常感谢这本书的合作者和编辑,尤其是Joe Howse、Adrian Roesbrock、Brandon Castellano、OpenCV社区,以及Packt出版社中那些为本书付出劳动的人。
Joseph Howse 生活在加拿大。在冬天,他留着胡子,而他的四只猫留着厚皮毛。他喜欢每天给猫梳毛。有时猫还会抓他的胡子。
自2012年以来,他一直在为Packt出版社写作,他的著作包括《OpenCV for Secret Agents》《OpenCV Blueprints》《Android Application Programming with OpenCV 3》《OpenCV Computer Vision with Python》以及《Python Game Programming by Example》。
当他不写书或打理萌宠时,他会提供咨询和培训,并通过他的公司(Nummist Media公司(http://nummist.com))进行软件开发服务。
刘波 博士,重庆工商大学计算机科学与信息工程学院教师,主要从事机器学习理论、计算机视觉和最优化技术研究,同时对Hadoop和Spark平台上的大数据分析感兴趣,也对Linux编程和Oracle数据库感兴趣。
苗贝贝 硕士,北京工商大学计算机与信息工程学院研究生,主要从事机器学习理论、时间序列动力学特征分析及应用的研究,对基于Python的计算机视觉分析有浓厚的兴趣。
史斌 2015年本科毕业于电子科技大学计算机学院,目前就职于成都知数科技有限公司,主要从事数据爬取、数据处理、平台运维等工作,熟悉Python、Linux shell,同时热爱计算机视觉编程,熟悉Python下的OpenCV编程。
目录
前言
作者简介
审校者简介
译者简介
第1章 安装OpenCV 1
1.1 选择和使用合适的安装工具 2
1.1.1 在Windows上安装 2
1.1.2 在OS X系统中安装 6
1.1.3 在Ubuntu及其衍生版本中安装 11
1.1.4 在其他类Unix系统中安装 12
1.2 安装Contrib模块 13
1.3 运行示例 13
1.4 查找文档、帮助及更新 14
1.5 总结 15
第2章 处理文件、摄像头和图形用户界面 16
2.1 基本I/O脚本 16
2.1.1 读/写图像文件 16
2.1.2 图像与原始字节之间的转换 19
2.1.3 使用numpy.array访问图像数据 20
译者序
OpenCV是开源、跨平台的计算机视觉库,由英特尔公司发起并参与开发,在商业和研究领域中可以免费使用。本书介绍了如何通过Python来开发基于OpenCV 3.0的应用。作为当前非常流行的动态语言之一,Python不仅使用非常简单,而且功能强大。通过Python来学习OpenCV框架,可让读者快速理解计算机视觉的基本概念以及重要算法。
本书分9章来介绍计算机视觉的重要概念,所有的概念都融入了一些很有趣的项目。本书首先详细介绍了多个平台下基于Python的OpenCV安装,继而介绍了计算机视觉应用的基本操作,包括图像文件的读取与显示,图像处理的基本操作(比如边缘检测等),深度估计与分割,人脸检测与识别,图像的检索,目标的检测与识别,目标跟踪,神经网络的手写体识别。可以这样说,本书是一本不可多得的采用OpenCV实践计算机视觉应用的好书。
本书的第1章由重庆工商大学计算机科学与信息工程学院的刘波博士翻译;第2章、第5章至第9章由苗贝贝翻译;第3章和第4章由史斌翻译。同时,刘波博士负责全书的技术审稿工作。
翻译本书的过程也是译者不断学习的过程。为了保证专业词汇翻译的准确性,意译部分既不失原著意境又无偏差, 在翻译过程中查阅了大量相关资料。但由于时间和能力有很,书中内容难免出现差错。若有问题,读者可通过电子邮件liubo7971@163.com和alingse@foxmail.com与我们联系,欢迎一起探讨,共同进步。并且,我们也会将勘误信息公布在http://www.cnblogs.com/ml-cv/上。
本书翻译过程得到如下项目资助:(1)重庆市教委研究项目“多核正则化机器学习理论研究”,项目号为KJ130709;(2)重庆工商大学研究项目“基于多核学习的高维数据分析研究”,项目号为2013-56-09;(3)电子商务及供应链系统重庆市重点实验室研究项目“基于迹比率的特征选择及关键技术研究”;(4)大数据稀疏表示判别字典学习及其应用技术研究,项目号为KJ1400612。
感谢重庆工商大学计算机科学与信息工程学院金融信息化专业杨仕喜同学对本书代码进行验证,并提出了宝贵意见。感谢家人的支持与鼓励,尤其感谢妻子杨雪莉和女儿刘典、刘恩丫,她们的信任与鼓励给我提供了不断前进的动力。
刘波
2016年3月
前言
本书将从图像处理的基本操作出发,带你开启先进计算机视觉概念的探索之旅。计算机视觉是一个快速发展的学科,在现实生活中,它的应用增长得非常快,因此写作本书的目的是为了帮助计算机视觉领域的新手和想要了解全新的OpenCV 3.0.0的计算机视觉专家。
本书的主要内容
第1章介绍如何在不同平台下安装基于Python的OpenCV,并给出一些常见问题的解决方法。
第2章介绍了OpenCV的I/O功能,并讨论与项目相关的概念,以及如何针对该项目进行面向对象设计。
第3章介绍一些图像变换方法,例如在图像中检测肤色、锐化图像、标记主体轮廓,以及使用线段检测器检测人行横道等。
第4章介绍如何利用深度摄像头的数据来识别前景和背景区域,这样就可以限制针对前景或背景的效果。
第5章介绍一些OpenCV的人脸检测功能和相关的数据文件,这些文件定义了跟踪目标的特定类型。
第6章介绍如何用OpenCV来检测图像特征,并利用这些特征来匹配和搜索图像。
第7章介绍目标检测和目标识别的概念,这是计算机视觉中最常见的问题之一。
第8章对目标跟踪进行深入探讨,目标跟踪是对摄像机中的图像或视频中移动的物体进行定位的过程。
第9章介绍基于OpenCV的人工神经网络,并介绍其在现实生活中的应用。
阅读前的准备工作
本书第1章会指导读者安装所有必要软件,你只需准备一台较新的计算机。另外,强烈推荐为计算机安装摄像头,但这并不是必备的。
本书的读者对象
本书针对具有一定Python工作经验的程序员以及想要利用OpenCV库研究计算机视觉课题的读者。本书不要求读者具有计算机视觉或OpenCV经验,但要具有编程经验。
本书体例
本书有很多用来区分不同信息的文本格式,下面给出一些这类格式的样例,并解释它们的含义。
代码块的格式如下:
为了提醒读者注意代码块中的特殊部分,会将相关行或相关项设置为粗体: