(特价书)理论物理中的Mathematica--电动力学,量子力学,广义相对论和分形(第二版)(英文影印版)
- 定价:¥96.00
- 校园优惠价:¥46.08 (48折) (马上了解)
- 评分:




(已有3条评价)
- 促销活动:
- 此商品暂时缺货(可留下联系方式,到货将第一时间通知您)
-
如果您急需团购,可点击“团购急调”按钮将此书加入购物车,由客服人员为您协调调货!
>> 查看详细说明
信息提示
关闭
如果您急需团购,可点击“团购急调”按钮将此书加入购物车,由我们的客服人员为您协调调货!
- 团购订单标准如下:
- 单品满30册可选择团购服务。
- 提交团购订单后,服务人员会主动和您联系,并根据您的会员等级、购买数量、金额、时间、配送要求等情况和您协商,以促成最终的成交。
- 有关团体购书的任何问题请随时联系:(010)63970506
基本信息
- 原书名:Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals
- 原出版社: Springer
内容简介
书籍 物理书籍
Classical Mechanics and Nonlinear Dynamics Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user's purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.
目录
《理论物理中的Mathematica--电动力学,量子力学,广义相对论和分形(第二版)(英文影印版)》
Volume I
Preface
1 Introduction
1.1 Basics
1.1.1 Structure of Mathematica
1.1.2 Interactive Use of Mathematica
1.1.3 Symbolic Calculations
1.1.4 Numerical Calculations
1.1.5 Graphics
1.1.6 Programming
2 Classical Mechanics
2.1 Introduction
2.2 Mathematical Tools
2.2.1 Introduction
2.2.2 Coordinates
2.2.3 Coordinate Transformations and Matrices
2.2.4 Scalars
2.2.5 Vectors
2.2.6 Tensors
2.2.7 Vector Products
2.2.8 Derivatives
2.2.9 Integrals
2.2.10 Exercises
2.3 Kinematics
2.3.1 Introduction
2.3.2 Velocity
2.3.3 Acceleration
2.3.4 Kinematic Examples
2.3.5 Exercises
2.4 Newtonian Mechanics
2.4.1 Introduction
2.4.2 Frame of Reference
2.4.3 Time
2.4.4 Mass
2.4.5 Newton's Laws
2.4.6 Forces in Nature
2.4.7 Conservation Laws
2.4.8 Application of Newton's Second Law
2.4.9 Exercises
2.4.10 Packages and Programs
2.5 Central Forces
2.5.1 Introduction
2.5.2 Kepler's Laws
2.5.3 Central Field Motion
2.5.4 Two-Particle Collisons and Scattering
2.5.5 Exercises
2.5.6 Packages and Programs
2.6 Calculus of Variations
2.6.1 Introduction
2.6.2 The Problem of Variations
2.6.3 Euler's Equation
2.6.4 Euler Operator
2.6.5 Algorithm Used in the Calculus of Variations
2.6.6 Euler Operator for q Dependent Variables
2.6.7 Euler Operator for q + p Dimensions
2.6.8 Variations with Constraints
2.6.9 Exercises
2.6.10 Packages and Programs
2.7 Lagrange Dynamics
2.7.1 Introduction
2.7.2 Hamilton's Principle Hisorical Remarks
2.7.3 Hamilton's Principle
2.7.4 Symmetries and Conservation Laws
2.7.5 Exercises
2.7.6 Packages and Programs
2.8 Hamiltonian Dynamics
2.8.1 Introduction
2.8.2 Legendre Transform
2.8.3 Hamilton's Equation of Motion
2.8.4 Hamilton's Equations and the Calculus of Variation
2.8.5 Liouvi!le's Theorem
2.8.6 Poisson Brackets
2.8.7 Manifolds and Classes
2.8.8 Canonical Transformations
2.8.9 Generating Functions
2.8.10 Action Variables
2.8.11 Exercises
2.8.12 Packages and Programs
2.9 Chaotic Systems
2.9.1 Introduction
2.9.2 Discrete Mappings and Hamiltonians
2.9.3 Lyapunov Exponents
2.9.4 Exercises
2.10 Rigid Body
2.10.1 Introduction
2.10.2 The Inertia Tensor
2.10.3 The Angular Momentum
2.10.4 Principal Axes of Inertia
2.10.5 Steiner's Theorem
2.10.6 Euler's Equations of Motion
2.10.7 Force-Free Motion of a Symmetrical Top
2.10.8 Motion of a Symmetrical Top in a Force Field
2.10.9 Exercises
2.10.10 Packages and Programms
3 Nonlinear Dynamics
3.1 Introduction
3.2 The Korteweg-de Vries Equation
3.3 Solution of the Korteweg-de Vries Equation
3.3.1 The Inverse Scattering Transform
3.3.2 Soliton Solutions of the Korteweg-de Vries Equation
3.4 Conservation Laws of the Korteweg--de Vries Equation
3.4.1 Definition of Conservation Laws
3.4.2 Derivation of Conservation Laws
3.5 Numerical Solution of the Korteweg--de Vries Equation
3.6 Exercises
3.7 Packages and Programs
3.7.1 Solution of the KdV Equation
3.7.2 Conservation Laws for the KdV Equation
3.7.3 Numerical Solution of the KdV Equation
References
Index
Volume II
Preface
4 Electrodynamics
4.1 Introduction
4.2 Potential and Electric Field of Discrete Charge Distributions
4.3 Boundary Problem of Electrostatics
4.4 Two Ions in the Penning Trap
4.4.1 The Center of Mass Motion
4.4.2 Relative Motion of the Ions
4.5 Exercises
4.6 Packages and Programs
4.6.1 Point Charges
4.6.2 Boundary Problem
4.6.3 Penning Trap
5 Quantum Mechanics
5.1 Introduction
5.2 The Schrodinger Equation
5.3 One-Dimensional Potential
5.4 The Harmonic Oscillator
5.5 Anharmonic Oscillator
5.6 Motion in the Central Force Field
5.7 Second Viriai Coefficient and Its Quantum Corrections
5.7.1 The SVC and Its Relation to Thermodynamic Properties
5.7.2 Calculation of the Classical SVC Bc(T) for the (2 n - n) -Potential
5.7.3 Quantum Mechanical Corrections Bq1(T) and Bq2(T) of the SVC
5.7.4 Shape Dependence of the Boyle Temperature
5.7.5 The High-Temperature Partition Function for Diatomic Molecules
5.8 Exercises
5.9 Packages and Programs
5.9.1 QuantumWell
5.9.2 HarmonicOscillator
5.9.3 AnharmonicOscillator
5.9.4 CentralField
6 General Relativity
6.1 Introduction
6.2 The Orbits in General Relativity
6.2.1 Quasielliptic Orbits
6.2.2 Asymptotic Circles
6.3 Light Bending in the Gravitational Field
6.4 Einstein's Field Equations (Vacuum Case)
6.4.1 Examples for Metric Tensors
6.4.2 The Christoffel Symbols
6.4.3 The Riemann Tensor
6.4.4 Einstein's Field Equations
6.4.5 The Cartesian Space
6.4.6 Cartesian Space in Cylindrical Coordinates
6.4.7 Euclidean Space in Polar Coordinates
6.5 The Schwarzschild Solution
6.5.1 The Schwarzschild Metric in Eddington-Finkelstein Form
6.5.2 Dingle's Metric
6.5.3 Schwarzschild Metric in Kruskal Coordinates
6.6 The Reissner-Nordstrom Solution for a Charged Mass Point
6.7 Exercises
6.8 Packages and Programs
6.8.1 EulerLagrange Equations
6.8.2 PerihelionShift
6.8.3 LightBending
7 Fractals
7.1 Introduction
7.2 Measuring a Borderline
7.2.1 Box Counting
7.3 The Koch Curve
7.4 Multifractals
7.4.I Multifractais with Common Scaling Factor
7.5 The Renormlization Group
7.6 Fractional Calculus
7.6.1 Historical Remarks on Fractional Calculus
7.6.2 The Riemann-Liouville Calculus
7.6.3 Mellin Transforms
7.6.4 Fractional Differential Equations
7.7 Exercises
7.8 Packages and Programs
7.8.1 Tree Generation
7.8.2 Koch Curves
7.8.3 Multifactals
7.8.4 Renormalization
7.8.5 Fractional Calculus
Appendix
A.1 Program Installation
A.2 Glossary of Files and Functions
A.3 Mathematica Functions
References
Index