(特价书)拓扑学II:同伦与同调,经典流形(英文影印版)
- 定价:¥60.00
- 校园优惠价:¥28.80 (48折) (马上了解)
- 评分:




(已有0条评价)
- 促销活动:
- 此商品暂时缺货(可留下联系方式,到货将第一时间通知您)
-
如果您急需团购,可点击“团购急调”按钮将此书加入购物车,由客服人员为您协调调货!
>> 查看详细说明
信息提示
关闭
如果您急需团购,可点击“团购急调”按钮将此书加入购物车,由我们的客服人员为您协调调货!
- 团购订单标准如下:
- 单品满30册可选择团购服务。
- 提交团购订单后,服务人员会主动和您联系,并根据您的会员等级、购买数量、金额、时间、配送要求等情况和您协商,以促成最终的成交。
- 有关团体购书的任何问题请随时联系:(010)63970506
基本信息
- 原书名:Topology II: Homotopy and Homology. Classical Manifolds
- 原出版社: Springer
内容简介
书籍 数学书籍
Two top experts in topology, O.Ya. Viro and D.B. Fuchs, give an upto-date account of research in central areas of topology and the theory of Lie groups. They cover homotopy, homology and cohomology as well as the theory of manifolds, Lie groups, Grassmannians and lowdimensional manifolds.
Their book will be used by graduate students and researchers in mathematics and mathematical physics.
目录
Ⅰ.Introduction to Homotopy Theory .
Chapter 1.Basic Concepts
1.Terminology and Notations
1.1.Set Theory
1.2.Logical Equivalence
1.3.Topological Spaces
1.4.Operations on Topological Spaces
1.5.Operations on Pointed Spaces
2.Homotopy
2.1.Homotopies
2.2.Paths
2.3.Homotopy as a Path
2.4.Homotopy Equivalence
2.5.Retractions
2.6.Deformation Retractions
2.7.Relative Homotopies
2.8.k-connectedness
2.9.Borsuk Pairs
2.10.CNRS Spaces
2.11.Homotopy Properties of Topological Constructions
2.12.Natural Group Structures on Sets of Homotopy Classes
3.Homotopy Groups
3.1.Absolute Homotopy Groups
3.2.Digression: Local Systems
3.3.Local Systems of Homotopy Groups of a Topological Space
3.4.Relative Homotopy Groups
3.5.The Homotopy Sequence of a Pair
3.6.Splitting
3.7.The Homotopy Sequence of a Triple
Chapter 2.Bundle Techniques
4.Bundles
4.1.General Definitions
4.2.Locally Trivial Bundles
4.3.Serre Bundles
4.4.Bundles of Spaces of Maps
5.Bundles and Homotopy Groups
5.1.The Local System of Homotopy Groups of the Fibres of a Serre Bundle ..
5.2.The Homotopy Sequence of a Serre Bundle
5.3.Important Special Cases
6.The Theory of Coverings
6.1.Coverings
6.2.The Group of a Covering
6.3.Hierarchies of Coverings
6.4.The Existence of Coverings
6.5.Automorphisms of a Coveting
6.6.Regular Coverings
6.7.Covering Maps
Chapter 3 Cellular Techniques
7.Cellular Spaces
7.1.Basic Concepts
7.2.Gluing of Cellular Spaces from Balls
7.3.Examples of Cellular Decompositions
7.4.Topological Properties of Cellular Spaces
7.5.Cellular Constructions
8.Simplicial Spaces
8.1.Basic Concepts
8.2.Simplicial Schemes
8.3.Simplicial Constructions
8.4.Stars, Links, Regular Neighbourhoods
8.5.Simplicial Approximation of a Continuous Map
9.Cellular Approximation of Maps and Spaces
9.1.Cellular Approximation of a Continuous Map
9.2.Cellular k-connected Pairs
9.3.Simplicial Approximation of Cellular Spaces
9.4.Weak Homotopy Equivalence
9.5.Cellular Approximation to Topological Spaces
9.6.The Covering Homotopy Theorem
Chapter 4 The Simplest Calculations
10.The Homotopy Groups of Spheres and Classical Manifolds
10.1.Suspension in the Homotopy Groups of Spheres
10.2.The Simplest Homotopy Groups of Spheres
10.3.The Composition Product
10.4.Homotopy Groups of Spheres
10.5.Homotopy Groups of Projective Spaces and Lens Spaces
10.6.Homotopy Groups of the Classical Groups
10.7.Homotopy Groups of Stiefel Manifolds and Spaces
10.8.Homotopy Groups of Grassmann Manifolds and Spaces
11.Application of Cellular Techniques
11.1.Homotopy Groups of a 1-dimensional Cellular Space
11.2.The Effect of Attaching Balls
11.3.The Fundamental Group of a Cellular Space
11.4.Homotopy Groups of Compact Surfaces
11.5.Homotopy Groups of Bouquets
11.6.Homotopy Groups of a k-connected Cellular Pair
11.7.Spaces with Given Homotopy Groups
12.Appendix
12.1.The Whitehead Product
12.2.The Homotopy Sequence of a Triad
12.3.Homotopy Excision, Quotient and Suspension Theorems ...