基本信息
- 原书名:Applied Multivariate Statistical Analysis (6th Edition)
- 原出版社: Prentice Hall
- 作者: (美)理查德.A.约翰逊 迪安.W.威克恩
- 译者: 陆璇 叶俊
- 丛书名: 工商管理优秀教材译丛.管理学系列
- 出版社:清华大学出版社
- ISBN:9787302183433
- 上架时间:2008-12-26
- 出版日期:2008 年11月
- 开本:16开
- 页码:595
- 版次:6-1
- 所属分类:数学 > 概率论与数理统计 > 数理统计
教材 > 研究生/本科/专科教材 > 理学 > 数学
内容简介
数学书籍
多元统计分析是统计学中内容十分丰富、应用范围极为广泛的一个分支。在自然科学和社会科学的许多学科中,研究者都有可能需要分析处理有多个变量的数据问题。从表面上看起来杂乱无章的数据学发现和提炼出规律性的结论,不仅需要对所研究的专业领域有很好的训练,而且要掌握必要的统计分析工具。
对研究者来说,本书是学习掌握多元统计分析的各种模型和方法的一本有价值的参考书:首先,它做到了浅入深出,既可供初学者入门,又能使有较深基础的人受益;其次,它既侧重矛应用,又兼顾必要的推理论证,使学习者既能学到“如何”做,而且在一定程度上了解“为什么”这样做;最后,它内涵丰富、全面,不仅基本包括各种在实际中常用的多元统计分析方法,而且对现代统计学的最新思想和进展有所介绍。值得一提的是,本书中有大量来自实际问题的数据实例,通过对这些实例的分析,读者可以学到如何将一个实际问题转化为恰当的统计问题,进而选择恰当的方法进行分析。
目录
1.1 引言
1.2 多元方法的应用
1.3 数据的组织
1.4 数据的展示及图表示
1.5 距离
1.6 最终评注
练习
参考文献
第2章 矩阵代数与随机向量
2.1 引言
2.2 矩阵和向量代数基础
2.3 正定矩阵
2.4 平方根矩阵
2.5 随机向量和矩阵
2.6 均值向量和协方差矩阵
2.7 矩阵不等式和极大化
补充2A向量与矩阵:基本概念
练习
参考文献
书摘
1.1引言
科学研究是一个反复学习的过程。首先必须指定一些与某种社会现象或自然现象有关的解释作为目标,然后通过收集数据和分析数据对这些目标进行检验。对通过实验或观察收集来的数据进行分析之后,人们通常会对现象提出一个改进的解释。在这个反复学习的全过程中,往往有些变量会被增添到研究中去,有些则会被剔除。因此大多数现象的复杂性要求研究人员去收集许多不同变量的观测值。本书讨论能从这几类数据集中获取信息的各种统计方法。由于这些数据包含许多变量的同时测量值,所以这一类方法称为多元分析。
人们需要了解许多变量之间的关系,这就使多元分析必然成为一个困难问题。因为一方面人的头脑常常被一大堆数据弄得不知所措;另一方面,供推断用的多元统计方法的推导却比在一元情形下需要更多的数学知识。我们选择的做法是只提供基于代数概念的解释,避开需要用到多元微积分学的统计结果的推导。我们的目标是以一种清晰的方式,利用大量说明性的例子和最低限度的数学,向读者介绍几种有用的多元方法。不过某些数学上的复杂知识仍是需要的,也要求读者具有进行定量思考的愿望。
我们的主要侧重点在于对那些不受控制或操纵的变量所提供的测量值进行分析,只是在第6和第7两章中,我们才处理少数几个实验设计方案,以产生人们主动操纵重要变量时才会出现的数据。尽管实验设计通常是一项科学研究中最重要的部分,但要在某学科中控制适当数据的生成通常是不可能的。(情况的确是这样,例如在商业、经济学、生态学、地质学及社会学中就是如此。)实验设计原理的详情可参考文献[6]和E7],幸运的是,这些文献的内容也适用于多元情形。
许多多元方法的基本依据是一种被称为多元正态分布的基本概率模型,这点以后将看得越来越清楚。另一些方法就性质而言属于特殊方法,其正确性要由逻辑或常识方面的论据来证明。无论多元方法的来源如何,都必须在计算机上实现。计算机技术的最新进展已产生出一些相当复杂的统计软件包,从而使实现步骤变得比较容易。
……